
1

Hashing for Similarity Search: A Survey
Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji

August 13, 2014

Abstract—Similarity search (nearest neighbor search) is a problem of pursuing the data items whose distances to a query item are the

smallest from a large database. Various methods have been developed to address this problem, and recently a lot of efforts have been

devoted to approximate search. In this paper, we present a survey on one of the main solutions, hashing, which has been widely studied

since the pioneering work locality sensitive hashing. We divide the hashing algorithms two main categories: locality sensitive hashing,

which designs hash functions without exploring the data distribution and learning to hash, which learns hash functions according the

data distribution, and review them from various aspects, including hash function design and distance measure and search scheme in

the hash coding space.

Index Terms—Approximate Nearest Neighbor Search, Similarity Search, Hashing, Locality Sensitive Hashing, Learning to Hash,

Quantization.

✦

1 INTRODUCTION

The problem of similarity search, also known as nearest
neighbor search, proximity search, or close item search, is
to find an item that is the nearest to a query item, called
nearest neighbor, under some distance measure from a
search (reference) database. In the case that the reference
database is very large or that the distance computation
between the query item and the database item is costly,
it is often computationally infeasible to find the exact
nearest neighbor. Thus, a lot of research efforts have
been devoted to approximate nearest neighbor search
that is shown to be enough and useful for many practical
problems.

Hashing is one of the popular solutions for approx-
imate nearest neighbor search. In general, hashing is
an approach of transforming the data item to a low-
dimensional representation, or equivalently a short code
consisting of a sequence of bits. The application of
hashing to approximate nearest neighbor search includes
two ways: indexing data items using hash tables that is
formed by storing the items with the same code in a
hash bucket, and approximating the distance using the
one computed with short codes.

The former way regards the items lying the buckets
corresponding to the codes of the query as the nearest
neighbor candidates, which exploits the locality sensitive
property that similar items have larger probability to
be mapped to the same code than dissimilar items.
The main research efforts along this direction consist of
designing hash functions satisfying the locality sensitive

• J. Wang is with Microsoft Research, Beijing, P.R. China.
E-mail: jingdw@microsoft.com

• J. Song and H.T. Shen are with School of Information Technology and
Electrical Engineering, The University of Queensland, Australia.
Email:{jk.song,shenht}@itee.uq.edu.au

• J. Ji is with Department of Computer Science and Technology, Tsinghua
University, Beijing, P.R. China.
E-mail: jijq10@mails.tsinghua.edu.cn

property and designing efficient search schemes using
and beyond hash tables.

The latter way ranks the items according to the dis-
tances computed using the short codes, which exploits
the property that the distance computation using the
short codes is efficient. The main research effort along
this direction is to design the effective ways to com-
pute the short codes and design the distance measure
using the short codes guaranteeing the computational
efficiency and preserving the similarity.

2 OVERVIEW

2.1 The Nearest Neighbor Search Problem

2.1.1 Exact nearest neighbor search

Nearest neighbor search, also known as similarity search,
proximity search, or close item search, is defined as:
Given a query item q, the goal is to find an item
NN(q), called nearest neighbor, from a set of items X =
{x1,x2, · · · ,xN} so that NN(q) = argminx∈X dist(q,x),
where dist(q,x) is a distance computed between q and
x. A straightforward generalization is a K-NN search,
where K-nearest neighbors (KNN(q)) are needed to be
found.

The problem is not fully specified without the distance
between an arbitrary pair of items x and q. As a typical
example, the search (reference) database X lies in a d-
dimensional space R

d and the distance is induced by

an ls norm, ‖x − q‖s = (
∑d

i=1 |xi − qi|s)1/s. The search
problem under the Euclidean distance, i.e., the l2 norm,
is widely studied. Other notions of search database, such
as each item formed by a set, and distance measure,
such as ℓ1 distance, cosine similarity and so on are also
possible.

The fixed-radius near neighbor (R-near neighbor)
problem, an alternative of nearest neighbor search, is
defined as: Given a query item q, the goal is to find

2

the items R that are within the distance C of q, R =
{x| dist(q,x) 6 R,x ∈ X}.

2.1.2 Approximate nearest neighbor search

There exists efficient algorithms for exact nearest neigh-
bor and R-near neighbor search problems in low-
dimensional cases. It turns out that the problems be-
come hard in the large scale high-dimensional case and
even most algorithms take higher computational cost
than the naive solution, linear scan. Therefore, a lot of
recent efforts are moved to approximate nearest neigh-
bor search problems. The (1 + ǫ)-approximate nearest
neighbor search problem, ǫ > 0, is defined as: Given a
query x, the goal is to find an item x so that dist(q,x) 6
(1 + ǫ) dist(q,x)∗, where x∗ is the true nearest neighbor.
The c-approximate R-near neighbor search problem is
defined as: Given a query x, the goal is to find some
item x, called cR-near neighbor, so that dist(q,x) 6 cR,
where x∗ is the true nearest neighbor.

2.1.3 Randomized nearest neighbor search

The randomized search problem aims to report the
(approximate) nearest (or near) neighbors with proba-
bility instead of deterministically. There are two widely-
studied randomized search problems: randomized c-
approximate R-near neighbor search and randomized
R-near neighbor search. The former one is defined as:
Given a query x, the goal is to report some cR-near
neighbor of the query q with probability 1 − δ, where
0 < δ < 1. The latter one is defined as: Given a query x,
the goal is to report some R-near neighbor of the query
q with probability 1− δ.

2.2 The Hashing Approach

The hashing approach aims to map the reference and/or
query items to the target items so that approximate
nearest neighbor search can be efficiently and accurately
performed using the target items and possibly a small
subset of the raw reference items. The target items are
called hash codes (also known as hash values, simply
hashes). In this paper, we may also call it short/compact
code interchangeably.

Formally, the hash function is defined as: y = h(x),
where y is the hash code and h(·) is the function. In
the application to approximate nearest neighbor search,
usually several hash functions are used together to com-
pute the hash code: y = h(x), where y = [y1 y2 · · · yM]T

and [h1(x) h2(x) · · · hM (x)]T . Here we use a vector y

to represent the hash code for presentation convenience.
There are two basic strategies for using hash codes

to perform nearest (near) neighbor search: hash table
lookup and Fast distance approximation.

2.2.1 Hash table lookup.

The hash table is a data structure that is composed of
buckets, each of which is indexed by a hash code. Each
reference item x is placed into a bucket h(x). Different

from the conventional hashing algorithm in computer
science that avoids collisions (i.e., avoids mapping two
items into some same bucket), the hashing approach
using a hash table aims to maximize the probability of
collision of near items. Given the query q, the items lying
in the bucket h(q) are retrieved as near items of q.

To improve the recall, L hash tables are constructed,
and the items lying in the L (L′, L′ < L) hash buckets
h1(q), · · · , hL(q) are retrieved as near items of q for
randomized R-near neighbor search (or randomized c-
approximate R-near neighbor search). To guarantee the
precision, each of the L hash codes, yi, needs to be a long
code, which means that the total number of the buckets
is too large to index directly. Thus, only the nonempty
buckets are retained by resorting to convectional hashing
of the hash codes hl(x).

2.2.2 Fast distance approximation.

The direct way is to perform an exhaustive search:
compare the query with each reference item by fast com-
puting the distance between the query and the hash code
of the reference item and retrieve the reference items
with the smallest distances as the candidates of nearest
neighbors, which is usually followed by a reranking step:
rerank the nearest neighbor candidates retrieved with
hash codes according to the true distances computed
using the original features and attain the K nearest
neighbors or R-near neighbor.

This strategy exploits two advantages of hash codes.
The first one is that the distance using hash codes can
be efficiently computed and the cost is much smaller
than that of the computation in the input space. The
second one is that the size of the hash codes is much
smaller than the input features and hence can be loaded
into memory, resulting the disk I/O cost reduction in the
case the original features are too large to be loaded into
memory.

One practical way of speeding up the search is to
perform a non-exhaustive search: first retrieve a set of
candidates using inverted index and then compute the
distances of the query with the candidates using the
short codes. Other research efforts includes organizing
the hash codes with a data structure, such as a tree or a
graph structure, to avoid exhaustive search.

2.3 Organization of This Paper

The organization of the remaining part is given as fol-
lows. Section 3 presents the definition of the locality
sensitive hashing (LSH) family and the instances of
LSH with various distances. Section 4 presents some
research works on how to perform efficient search given
LSH codes and model and analyze LSH in aspects Sec-
tions 5, 6,and 7 review the learning-to-hash algorithms.
Finally, Section 9 concludes this survey.

3

3 LOCALITY SENSITIVE HASHING: DEFINI-
TION AND INSTANCES

The term “locality-sensitive hashing” (LSH) was intro-
duced in 1998 [42], to name a randomized hashing
framework for efficient approximate nearest neighbor
(ANN) search in high dimensional space. It is based on
the definition of LSH family H, a family of hash func-
tions mapping similar input items to the same hash code
with higher probability than dissimilar items. However,
the first specific LSH family, min-hash, was invented in
1997 by Andrei Broder [11], for near-duplicate web page
detection and clustering, and it is one of the most pop-
ular LSH method that is extensively-studied in theory
and widely-used in practice.

Locality-sensitive hashing was first studied by the
theoretical computer science community. The theoretical
research mainly focuses on three aspects. The first one
is on developing different LSH families for various dis-
tances or similarities, for example, p-stable distribution
LSH for ℓp distance [20], sign-random-projection (or sim-
hash) for angle-based distance [13], min-hash for Jaccard
coefficient [11], [12] and so on, and many variants are
developed based on these basic LSH families [19]. The
second one is on exploring the theoretical boundary of
the LSH framework, including the bound on the search
efficiency (both time and space) that the best possible
LSH family can achieve for certain distances and sim-
ilarities [20], [94], [105], the tight characteristics for a
similarity measure to admit an LSH family [13], [16], and
so on. The third one focuses on improving the search
scheme of the LSH methods, to achieve theoretically
provable better search efficiency [107], [19].

Shortly after it was proposed by the theoretical com-
puter science community, the database and related com-
munities began to study LSH, aiming at building real
database systems for high dimensional similarity search.
Research from this side mainly focuses on developing
better data structures and search schemes that lead to
better search quality and efficiency in practice [91], [25].
The quality criteria include precision and recall, and the
efficiency criteria are commonly the query time, storage
requirement, I/O consumption and so on. Some of these
work also provide theoretical guarantees on the search
quality of their algorithms [25].

In recent years, LSH has attracted extensive attention
from other communities including computer vision (CV),
machine learning, statistics, natural language processing
(NLP) and so on. For example, in computer vision,
high dimensional features are often required for various
tasks, such as image matching, classification. LSH, as
a probabilistic dimension reduction method, has been
used in various CV applications which often reduce to
approximate nearest neighbor search [17], [18]. However,
the performance of LSH is limited due to the fact that it
is totally probabilistic and data-independent, and thus
it does not take the data distribution into account. On
the other hand, as an inspiration of LSH, the concept of

“small code” or “compact code” has become the focus
of many researchers from the CV community, and many
learning-based hashing methods have come in to being
[135][125][126][30][83][139][127][29][82][130][31]. These
methods aim at learning the hash functions for better
fitting the data distribution and labeling information,
and thus overcoming the drawback of LSH. This part
of the research often takes LSH as the baseline for
comparison.

The machine learning and statistics community also
contribute to the study of LSH. Research from this side
often view LSH as a probabilistic similarity-preserving
dimensionality reduction method, from which the hash
codes that are produced can provide estimations to some
pairwise distance or similarity. This part of the study
mainly focuses on developing variants of LSH functions
that provide an (unbiased) estimator of certain distance
or similarity, with smaller variance [68], [52], [73], [51], or
smaller storage requirement of the hash codes [70], [71],
or faster computation of hash functions [69], [73], [51],
[118]. Besides, the machine learning community also
devotes to developing learning-based hashing methods.

In practice, LSH is widely and successfully used in the
IT industry, for near-duplicate web page and image de-
tection, clustering and so on. Specifically, The Altavista
search engine uses min-hash to detect near-duplicate
web pages [11], [12], while Google uses sim-hash to
fulfill the same goal [92].

In the subsequent sections, we will first introduce
different LSH families for various kinds of distances or
similarities, and then we review the study focusing on
the search scheme and the work devoted to modeling
LSH and ANN problem.

3.1 The Family

The locality-sensitive hashing (LSH) algorithm is intro-
duced in [42], [27], to solve the (R, c)-near neighbor
problem. It is based on the definition of LSH family
H, a family of hash functions mapping similar input
items to the same hash code with higher probability than
dissimilar items. Formally, an LSH family is defined as
follows:

Definition 1 (Locality-sensitive hashing): A family of H
is called (R, cR, P1, P2)-sensitive if for any two items p

and q,

• if dist(p,q) 6 R, then Prob[h(p) = h(q)] > P1,
• if dist(p,q) > cR, then Prob[h(p) = h(q)] 6 P2.

Here c > 1, and P1 > P2. The parameter ρ = log(1/P1)
log(1/P2)

governs the search performance, the smaller ρ, the better
search performance. Given such an LSH family for dis-
tance measure dist, there exists an algorithm for (R, c)-
near neighbor problem which uses O(dn + n1+ρ) space,
with query time dominated by O(nρ) distance compu-
tations and O(nρ log1/p2

n) evaluations of hash functions
[20].

The LSH scheme indexes all items in hash tables and
searches for near items via hash table lookup. The hash

4

table is a data structure that is composed of buckets,
each of which is indexed by a hash code. Each reference
item x is placed into a bucket h(x). Different from the
conventional hashing algorithm in computer science that
avoids collisions (i.e., avoids mapping two items into
some same bucket), the LSH approach aims to maximize
the probability of collision of near items. Given the query
q, the items lying in the bucket h(q) are considered as
near items of h(q).

Given an LSH family H, the LSH scheme amplifies
the gap between the high probability P1 and the low
probability P2 by concatenating several functions. In
particular, for parameter K , K functions h1(x), ..., hK(x),
where hk (1 6 k 6 K) are chosen independently and
uniformly at random from H, form a compound hash
function g(x) = (h1(x), · · · , hK(x)). The output of this
compound hash function identifies a bucket id in a hash
table. However, the concatenation of K functions also
reduces the chance of collision between similar items.
To improve the recall, L such compound hash functions
g1, g2, ..., gL are sampled independently, each of which
corresponds to a hash table. These functions are used
to hash each data point into L hash codes, and L hash
tables are constructed to index the buckets correspond-
ing to these hash codes respectively. The items lying in
the L hash buckets are retrieved as near items of h(q)
for randomized R-near neighbor search (or randomized
c-approximate R-near neighbor search).

In practice, to guarantee the precision, each of the L
hash codes, gl(x), needs to be a long code (or K is large),
and thus the total number of the buckets is too large to
index directly. Therefore, only the nonempty buckets are
retained by resorting to conventional hashing of the hash
codes gl(x).

There are different kinds of LSH families for different
distances or similarities, including ℓp distance, arccos or
angular distance, Hamming distance, Jaccard coefficient
and so on.

3.2 ℓp Distance

3.2.1 LSH with p-stable distributions

The LSH scheme based on the p-stable distributions,
presented in [20], is designed to solve the search problem
under the ℓp distance ‖xi − xj‖p, where p ∈ (0, 2]. The
p-stable distribution is defined as: A distribution D is
called p-stable, where p > 0, if for any n real numbers
v1 · · · vn and i.i.d. variables X1 · · ·Xn with distribution D,
the random variable

∑n
i=1 viXi has the same distribution

as the variable (
∑n

i=1 |vi|p)1/pX , where X is a random
variable with distribution D. The well-known Gaussian
distribution DG, defined by the density function g(x) =
1√
2π
e−x2/2, is 2-stable.

In the case that p = 1, the exponent ρ is equal to 1
c +

O(R/r), and later it is shown in [94] that it is impossible
to achieve ρ 6

1
2c . Recent study in [105] provides more

lower bound analysis for Hamming distance, Euclidean
distance, and Jaccard distance.

The LSH scheme using the p-stable distribution to
generate hash codes is described as follows. The hash

function is formulated as hw,b(x) = ⌊wTx+b
r ⌋. Here, w

is a d-dimensional vector with entries chosen indepen-
dently from a p-stable distribution. b is a real number
chosen uniformly from the range [0, r]. r is the window
size, thus a positive real number.

The following equation can be proved

P (hw,b(x1) = hw,b(x2))

∫ r

0

1

c
fp(

t

c
)(1 − t

r
)dt, (1)

where c = ‖x1 − x2‖p, which means that such a hash
function belongs to the LSH family under the ℓp distance.

Specifically, to solve the search problem under the
Euclidean distance, the 2-stable distribution, i.e., the
Gaussian distribution, is chosen to generate the random
projection w. In this case (p = 2), the exponent ρ drops
strictly below 1/c for some (carefully chosen) finite value
of r.

It is claimed that uniform quantization [72] without

the offset b, hw(x) = ⌊wTx
r ⌋ is more accurate and uses

fewer bits than the scheme with the offset.

3.2.2 Leech lattice LSH

Leech lattice LSH [1] is an LSH algorithm for the search
in the Euclidean space. It is a multi-dimensional version
of the aforementioned approach. The approach firstly
randomly projects the data points into R

t, t is a small
super-constant (= 1 in the aforementioned approach).
The space R

t is partitioned into cells, using Leech lattice,
which is a constellation in 24 dimensions. The nearest
point in Leech lattice can be found using a (bounded)
decoder which performs only 519 floating point opera-
tions per decoded point. On the other hand, the exponent
ρ(c) is quite attractive: ρ(2) is less than 0.37. E8 lattice is
used because its decoding is much cheaper than Leech
lattice (its quantization performance is slightly worse) A
comparison of LSH methods for the Euclidean distance
is given in [108].

3.2.3 Spherical LSH

Spherical LSH [123] is an LSH algorithm designed for
points that are on a unit hypersphere in the Euclidean
space. The idea is to consider the regular polytope,
simplex, orthoplex, and hypercube, for example, that are
inscribed into the hypersphere and rotated at random.
The hash function maps a vector on the hypersphere into
the closest polytope vertex lying on the hypersphere.
It means that the buckets of the hash function are the
Voronoi cells of the polytope vertices. Though there is
no theoretic analysis about exponent ρ, the Monte Carlo
simulation shows that it is an improvement over the
Leech lattice approach [1].

3.2.4 Beyond LSH

Beyond LSH [3] improves the ANN search in the Eu-
clidean space, specifically solving (c, 1)-ANN. It consists

5

of two-level hashing structures: outer hash table and
inner hash table. The outer hash scheme aims to partition
the data into buckets with a filtered out process such
that all the pairs of points in the bucket are not more
than a threshold, and find a (1 + 1/c)-approximation to
the minimum enclosing ball for the remaining points.
The inner hash tables are constructed by first computing
the center of the ball corresponding to a non-empty
bucket in outer hash tables and partitioning the points
belonging to the ball into a set of over-lapped subsets,
for each of which the differences of the distance of the
points to the center is within [−1, 1] and the distance of
the overlapped area to the center is within [0, 1]. For the
subset, an LSH scheme is conducted. The query process
first locates a bucket from outer hash tables for a query. If
the bucket is empty, the algorithm stops. If the distance
of the query to the bucket center is not larger than c,
then the points in the bucket are output as the results.
Otherwise, the process further checks the subsets in the
bucket whose distances to the query lie in a specific
range and then does the LSH query in those subsets.

3.3 Angle-Based Distance

3.3.1 Random projection

The LSH algorithm based on random projection [2],
[13] is developed to solve the near neighbor search
problem under the angle between vectors, θ(xi,xj) =

arccos
xT
i xj

‖xi‖2‖xj‖2
. The hash function is formulated as

h(x) = sign(wTx), where w follows the standard Gaus-
sian distribution. It is easily shown that P (h(xi) =

h(xj)) = 1− θ(xi,xj)
π , where θ(xi,xj) is the angle between

xi and xj , thus such a hash function belongs to the LSH
family with the angle-based distance.

3.3.2 Super-bit LSH

Super-bit LSH [52] aims to improve the above hashing
functions for arccos (angular) similarity, by dividing the
random projections into G groups then orthogonalizing
B random projections for each group, obtaining new
GB random projections and thus G B-super bits. It is
shown that the Hamming distance over the super bits
is an unbiased estimation for the angular distance and
the variance is smaller than the above random projection
algorithm.

3.3.3 Kernel LSH

Kernel LSH [64], [65] aims to build LSH functions
with the angle defined in the kernel space, θ(xi,xj) =

arccos
φ(xi)

Tφ(xj)
‖φ(xi)‖2‖φ(xj)‖2

. The key challenge is in construct-

ing a projection vector w from the Gaussian distribution.
Define zt =

1
t

∑

i∈St
φ(xi) where t is a natural number,

and S is a set of t database items chosen i.i.d.. The
central limit theorem shows that for sufficiently large
t, the random variables z̃t =

√
tΣ−1/2(zt − µ) follows a

Normal distribution N(0, I). Then the hash function is
given as

h(φ(x)) =

{

1 if φ(x)Σ−1/2z̃t > 0
0 otherwise.

(2)

The covariance matrix Σ and the mean µ are estimated
over a set of randomly chosen p database items, using
a technique similar to that used in kernel principal
component analysis.

Multi-kernel LSH [133], [132], uses multiple kernels
instead of a single kernel to form the hash functions
with assigning the same number of bits to each kernel
hash function. A boosted version of multi-kernel LSH
is presented in [137], which adopts the boosting scheme
to automatically assign various number of bits to each
kernel hash function.

3.3.4 LSH with learnt metric

Semi-supervised LSH [45], [46], [66] first learns a Maha-
lanobis metric from the semi-supervised information and
then form the hash function according to the pairwise

similarity θ(xi,xj) = arccos
xT
i Axj

‖Gxi‖2‖Gxj‖2
, where GTG =

A and A is the learnt metric from the semi-supervised
information. An extension, distribution aware LSH [146],
is proposed, which, however, partitions the data along
each projection direction into multiple parts instead of
only two parts.

3.3.5 Concomitant LSH

Concomitant LSH [23] is an LSH algorithm that uses con-
comitant rank order statistics to form the hash functions
for cosine similarity. There are two schemes: concomitant
min hash and concomitant min L-multi-hash.

Concomitant min hash is formulated as follows: gen-
erate 2K random projections {w1,w2, · · · ,w2K}, each
of which is drawn independently from the standard
normal distribution N (0, I). The hash code is computed
in two steps: compute the 2K projections along the 2K

projection directions, and output the index of the pro-
jection direction along which the projection value is the

smallest, formally written by hc(x) = argmin2
K

k=1 w
T
k x.

It is shown that the probability Prob[hc(x1) = hc(x2)]
is a monotonically increasing function with respect to

xT
1 x2

‖x1‖2‖x2‖2
.

Concomitant min L-multi-hash instead generates L
hash codes: the indices of the projection directions along
which the projection values are the top L smallest. It can
be shown that the collision probability is similar to that
of Concomitant min hash.

Generating a hash code of length K = 20 means
that it requires 1, 048, 576 random projections and vec-
tor multiplications, which is too high. To solve this
problem, a cascading scheme is adopted: e.g., gener-
ate two concomitant hash functions, each of which
generates a code of length 10, and compose them
together, yielding a code of 20 bits, which only re-
quires 2 × 210 random projections and vector multi-
plications. There are two schemes proposed in [23]:

6

cascade concomitant min & max hash that composes

the two codes [argmin2
K

k=1 w
T
k x, argmax2

K

k=1 w
T
k x], and

cascade concomitant L2 min & max hash multi-hash
which is formed using the indices of the top smallest
and largest projection values.

3.3.6 Hyperplane hashing

The goal of searching nearest neighbors to a query
hyperplane is to retrieve the points from the database
X that are closest to a query hyperplane whose normal
is given by n ∈ R

d. The Euclidean distance of a point x
to a hyperplane with the normal n is:

d(Pn,x) = ‖nTx‖. (3)

The hyperplane hashing family [47], [124], under the
assumption that the hyperplane passes through origin
and the data points and the normal are unit norm (which
indicates that hyperplane hashing corresponds to search
with absolute cosine similarity), is defined as follows,

h(z) =

{

hu,v(z, z) if z is a database vector
hu,v(z,−z if z is a query hyperplane normal.

(4)
Here hu,v(a,b) = [hu(a) hv(b)] = [sign(uTa) sign(vTb)],
where u and v are sampled independently from a stan-
dard Gaussian distribution.

It is shown that the above hashing family belongs to
LSH: it is (r, r(1+ ǫ), 14 − 1

π2 r,
1
4 − 1

π2 r(1+ ǫ))-sensitive for
the angle distance dθ(x,n) = (θx,n − π

2)
2, where r, ǫ > 0.

The angle distance is equivalent to the distance of a point
to the query hyperplane.

The below family, called XOR 1-bit hyperplane hash-
ing,

h(z) =

{

hu(z)⊕ hv(z) if z is a database vector
hu(z)⊕ hv(−z) if z is a hyperplane normal,

(5)
is shown to be (r, r(1+ǫ), 12− 1

π2 r,
1
2− 1

π2 r(1+ǫ))-sensitive
for the angle distance dθ(x,n) = (θx,n− π

2)
2, where r, ǫ >

0.
Embedded hyperplane hashing transforms the

database vector (the normal of the query hyperplane)
into a high-dimensional vector,

ā = vec(aaT)[a21, a1a2, · · · , a1ad, a2a1, a22, a2a3, · · · , a2d].
(6)

Assuming a and b to be unit vectors, the Euclidean
distance between the embeddings ā and −b̄ is given
‖ā−(−ā)‖22 = 2+2(aTb)2, which means that minimizing
the distance between the two embeddings is equivalent
to minimizing |aTb|.

The embedded hyperplane hash function family is
defined as

h(z) =

{

hu(z̄) if z is a database vector
hu(−z̄) if z is a query hyperplane normal.

(7)
It is shown to be (r, r(1 +
ǫ), 1

π cos−1 sin2(
√
r), 1

π cos−1 sin2(
√

r(1 + ǫ))) for the
angle distance dθ(x,n) = (θx,n − π

2)
2, where r, ǫ > 0.

It is also shown that the exponent for embedded
hyperplane hashing is similar to that for XOR 1-bit hy-
perplane hashing and stronger than that for hyperplane
hashing.

3.4 Hamming Distance

One LSH function for the Hamming distance with binary
vectors y ∈ {0, 1}d is proposed in [42], h(y) = yk, where
k ∈ {1, 2, · · · , d} is a randomly-sampled index. It can be

shown that P (h(yi) = h(yj)) = 1− ‖yi−yj‖h

d . It is proven
that the exponent ρ is 1/c.

3.5 Jaccard Coefficient

3.5.1 Min-hash

The Jaccard coefficient, a similarity measure between

two sets, A,B ∈ U , is defined as sim(A,B) = ‖A∩B‖
‖A∪B‖ .

Its corresponding distance is taken as 1 − sim(A,B).
Min-hash [11], [12] is an LSH function for the Jac-
card similarity. Min-hash is defined as follows: pick a
random permutation π from the ground universe U ,
and define h(A) = mina∈A π(a). It is easily shown
that P (h(A) = h(B)) = sim(A,B). Given the K hash
values of two sets, the Jaccard similarity is estimated as
1
K

∑K
k=1 δ[hk(A) = hk(B)], where each hk corresponds to

a random permutation that is independently generated.

3.5.2 K-min sketch

K-min sketch [11], [12] is a generalization of min-wise
sketch (forming the hash values using the K smallest
nonzeros from one permutation) used for min-hash.
It also provides an unbiased estimator of the Jaccard
coefficient but with a smaller variance, which however
cannot be used for approximate nearest neighbor search
using hash tables like min-hash. Conditional random
sampling [68], [67] also takes the k smallest nonzeros
from one permutation, and is shown to be a more accu-
rate similarity estimator. One-permutation hashing [73],
also uses one permutation, but breaks the space into
K bins, and stores the smallest nonzero position in
each bin and concatenates them together to generate a
sketch. However, it is not directly applicable to nearest
neighbor search by building hash tables due to empty
bins. This issue is solved by performing rotation over
one permutation hashing [118]. Specifically, if one bin is
empty, the hashed value from the first non-empty bin
on the right (circular) is borrowed as the key of this bin,
which supplies an unbiased estimate of the resemblance
unlike [73].

3.5.3 Min-max hash

Min-max hash [51], instead of keeping the smallest hash
value of each random permutation, keeps both the small-
est and largest values of each random permutation. Min-
max hash can generate K hash values, using K

2 random
permutations, while still providing an unbiased estima-
tor of the Jaccard coefficient, with a slightly smaller
variance than min-hash.

7

3.5.4 B-bit minwise hashing

B-bit minwise hashing [71], [70] only uses the lowest
b-bits of the min-hash value as a short hash value,
which gains substantial advantages in terms of storage
space while still leading to an unbiased estimator of the
resemblance (the Jaccard coefficient).

3.5.5 Sim-min-hash

Sim-min-hash [149] extends min-hash to compare sets
of real-valued vectors. This approach first quantizes the
real-valued vectors and assigns an index (word) for each
real-valued vector. Then, like the conventional min-hash,
several random permutations are used to generate the
hash keys. The different thing is that the similarity is

estimated as 1
K

∑K
k=1 sim(xA

k ,x
B
k), where xA

k (xB
k) is

the real-valued vector (or Hamming embedding) that is
assigned to the word hk(A) (hk(B)), and sim(·, ·) is the
similarity measure.

3.6 χ2 Distance

χ2-LSH [33] is a locality sensitive hashing function for
the χ2 distance. The χ2 distance over two vectors xi and
xj is defined as

χ2(xi,xj) =

√

√

√

√

d
∑

t=1

(xit − xjt)2

xit − xjt
. (8)

The χ2 distance can also be defined without the square-
root, and the below developments still hold by substi-
tuting r to r2 in all the equations.

The χ2-LSH function is defined as

hw,b(x) = ⌊gr(wTx) + b⌋, (9)

where gr(x) =
1
2 (
√

8x
r2 + 1−1), each entry of w is drawn

from a 2-stable distribution, and b is drawn from a
uniform distribution over [0, 1].

It can be shown that

P (hw,b(xi) = hw,b(xj))

=

∫ (n+1)r2

0

1

c
f(
t

c
)(1− t

(n+ 1)r2
)dt, (10)

where f(t) denotes the probability density function of
the absolute value of the 2-stable distribution, c = ‖xi −
xj‖2.

Let c′ = χ2(xi,xj). It can be shown that P (hw,b(xi) =
hw,b(xj)) decreases monotonically with respect to c and
c′. Thus, we can show it belongs to the LSH family.

3.7 Other Similarities

3.7.1 Rank similarity

Winner Take All (WTA) hash [140] is a sparse embedding
method that transforms the input feature space into
binary codes such that the Hamming distance in the
resulting space closely correlates with rank similarity
measure. The rank similarity measure is shown to be

more useful for high-dimensional features than the Eu-
clidean distance, in particular in the case of normalized
feature vectors (e.g., the ℓ2 norm is equal to 1). The used
similarity measure is a pairwise-order function, defined
as

simpo(x1,x2) =
d−1
∑

i=0

i
∑

j=1

δ[(x1i − x1j)(x2i − x2j) > 0]

(11)

=

d
∑

i=1

Ri(x1,x2), (12)

where Ri(x1,x2) = |L(x1, i) ∩ L(x2, i)| and L(x1, i) =
{j|x1i > x1j}.

WTA hash generates a set of K random permutations
{πk}. Each permutation πk is used to reorder the ele-
ments of x, yielding a new vector x̄. The kth hash code
is computed as argmaxTi=1 x̄i, taking a value between 0
and T − 1. The final hash code is a concatenation of T
values each corresponding to a permutation. It is shown
that WTA hash codes satisfy the LSH property and min-
hash is a special case of WTA hash.

3.7.2 Shift invariant kernels

Locality sensitive binary coding using shift invariant
kernel hashing [109] exploits the property that the binary
mapping of the original data is guaranteed to preserve
the value of a shift-invariant kernel, the random Fourier
features (RFF) [110]. The RFF is defined as

φw,b(x) =
√
2 cos(wTx+ b), (13)

where w ∼ PK and b ∼ Unif[0, 2π]. For example, for the

Gaussian Kernel K(s) = e−γ‖s‖2/2, w ∼ Normal(0, γI). It
can be shown that Ew,b[φw,b(x)φw,b(y)] = K(x,y).

The binary code is computed as

sign(φw,b(x) + t), (14)

where t is a random threshold, t ∼ Unif[−1, 1]. It is
shown that the normalized Hamming distance (i.e., the
Hamming distance divided by the number of bits in
the code string) are both lower bounded and upper
bounded and that the codes preserve the similarity in
a probabilistic way.

3.7.3 Non-metric distance

Non-metric LSH [98] extends LSH to non-metric data by
embedding the data in the original space into an implicit
reproducing kernel Kreĭn space where the hash function
is defined. The kreĭn space with the indefinite inner
product < ·, · >K K admits an orthogonal decomposition
as a direct sum K = K+ ⊕ K−, where (K+, κ+(·, ·)) and
(K−, κ−(·, ·)) are separable Hilbert spaces with their cor-
responding positive definite inner products. The inner
product K is then computed as

< ξ+ + ξ−, ξ
′
+ + ξ′− >K= κ+(ξ+, ξ

′
+)− κ−(ξ−, ξ

′
−). (15)

8

Given the orthogonality of K+ and K−of, the pairwise
ℓ2 distance in K is compute as

‖ξ − ξ′‖2K = ‖ξ+ − ξ′+‖2K+
− ‖ξ− − ξ′−‖2K−

. (16)

The projections with the definite inner product K+ and
K− can be computed using the technology in kernel LSH,
denoted by p+ and p−, respectively. The hash function
with the input being (p+(ξ) − p+(ξ), p+(ξ) + p+(ξ)) =
(a1(ξ), a2(ξ)) and the output being two binary bits is
defined as,

h(ξ) = [δ[a1(ξ) > θ], δ[a2(ξ) > θ]], (17)

where a1(ξ) and a2(ξ) are assumed to be normalized to
[0, 1] and θ is a real number uniformly drawn from [0, 1].
It can be shown that P (h(ξ) = h(ξ′)) = (1 − |a1(ξ) −
a1(ξ

′)|)(1−|a2(ξ)−a2(ξ′)|), which indicates that the hash
function belongs to the LSH family.

3.7.4 Arbitrary distance measures

The basic idea of distance-based hashing [4] uses a line
projection function

f(x; a1, a2)

=
1

2 dist(a1, a2)
(dist2(x, a1) + dist2(a1, a2)− dist2(x, a2)),

(18)

to formulate a hash function,

h(x; a1, a2) =

{

1 if f(x; a1, a2) ∈ [t1, t2]
0 otherwise.

(19)

Here, a1 and a2 are randomly selected data items,
dist(·, ·) is the distance measure, and t1 and t2 are two
thresholds, selected so that half of the data items are
hashed to 1 and the other half to 0.

Similar to LSH, distance-based hashing generates a
compound hash function using K distance-based hash
functions and accordingly L compound hash functions,
yielding L hash tables. However, it cannot be shown
that the theoretic guarantee in LSH holds for DBH.
There are some other schemes discussed in [4], including
optimizing L and K from the dataset, applying DBH
hierarchically so that different set of queries use different
parameters L and K , and so on.

4 LOCALITY SENSITIVE HASHING: SEARCH,
MODELING, AND ANALYSIS

4.1 Search

4.1.1 Entropy-based search

The entropy-based search algorithm [107], given a query
point q, picks a set of (O(Nρ)) random points v from
B(q, R), a ball centered at q with the radius r and
searches in the buckets H(v), to find cR-near neighbors.
Here N is the number of the database items, ρ = E

log(1/g) ,

M is the entropy I(h(p)|q, R) where p is a random
point in B(q, R), and g denotes the upper bound on the
probability that two points that are at least distance cr

apart will be hashed to the same bucket. In addition, the
search algorithm suggests to build a single hash table
with K = N

log(1/g) hash bits.
The paper [107] presents the theoretic evidence theo-

retically guaranteeing the search quality.

4.1.2 LSH forest

LSH forest [9] represents each hash table, built from
LSH, using a tree, by pruning subtrees (nodes) that do
not contain any database points and also restricting the
depth of each leaf node not larger than a threshold.
Different from the conventional scheme that finds the
candidates from the hash buckets corresponding to the
hash codes of the query point, the search algorithm finds
the points contained in subtrees over LSH forest having
the largest prefix match by a two-phase approach: the
first top-down phase descends each LSH tree to find the
leaf having the largest prefix match with the hash code of
the query, the second bottom-up phase back-tracks each
tree from the discovered leaf nodes in the first phase
in the largest-prefix-match-first manner to find subtrees
having the largest prefix match with the hash code of
the query.

4.1.3 Adaptative LSH

The basic idea of adaptative LSH [48] is to select the
most relevant hash codes based on the relevance value.
The relevance value is computed by accumulating the
differences between the projection value and the mean
of the corresponding line segment along the projection
direction (or equivalently the difference of the projection
values along the projection directions and the center of
the corresponding bucket).

4.1.4 Multi-probe LSH

The basic idea of multi-probe LSH [91] is to intelligently
probe multiple buckets that are likely to contain query
results in a hash table, whose hash values may not
necessarily be the same to the hash value of the query
vector. Given a query q, with its hash code denoted
by g(q) = (h1(q), h2(q), · · · , hK(q)), multi-probe LSH
finds a sequence of hash perturbation vector, {δi =
{δi1, δi2, · · · , δiK}} and sequentially probe the hash buck-

ets {g(q) + δo(i)}. A score, computed as
∑K

j=1 x
2
j(δij),

where xj(δij) is the distance of q from the boundary
of the slot hj(q) + δj , is used to sort the perturbation
vectors, so that the buckets are accessed in order of
increasing the scores. The paper [91] also proposes to
use the expectation E(x2j (δij)), which is estimated with
the assumption that δij is uniformly distributed in [0, r]
(r is the width of the hash function used for Euclidean
LSH), to replace x2j(δij) for sorting the perturbation
vectors. Compared with conventional LSH, to achieve
the same search quality, multi-probe LSH has a similar
time efficiency while reducing the number of hash tables
by an order of magnitude.

The posteriori multi-probe LSH algorithm presented
in [56] gives a probabilistic interpretation of multi-probe

9

LSH and presents a probabilistic score, to sort the per-
turbation vectors. The basic ideas of the probabilistic
score computation include the property (likelihood) that
the difference of the projections of two vectors along
a random projection direction drawn from a Gaussian
distribution follows a Gaussian distribution, as well as
estimating the distribution (prior) of the neighboring
points of a point from the train query points and their
neighboring points with assuming that the neighbor
points of a query point follow a Gaussian distribution.

4.1.5 Dynamic collision counting for search

The collision counting LSH scheme introduced in [25]
uses a base of m single hash functions to construct
dynamic compound hash functions, instead of L static
compound hash functions each of which is composed
of K hash functions. This scheme regards a data vector
that collides with the query vector over at least K hash
functions out of the base of m single hash functions as
a good cR-NN candidate. The theoretical analysis shows
that such a scheme by appropriately choosing m and K
can have a guarantee on search quality. In case that there
is no data returned for a query (i.e., no data vector has
at least K collisions with the query), a virtual reranking
scheme is presented with the essential idea of expanding
the window width gradually in the hash function for
E2LSH, to increase the collision chance, until finding
enough number of data vectors that have at least K
collisions with the query.

4.1.6 Bayesian LSH

The goal of Bayesian LSH [113] is to estimate the prob-
ability distribution, p(s|M(m, k)), of the true similarity
s in the case that m matches out of k hash bits for a
pair of hash codes (g(q), g(p)) of the query vector q and
a NN candidate p, which is denoted by M(m, k), and
prune the candidate p if the probability for the case s > t
with t being a threshold is less than ǫ. In addition, if the
concentration probability P (|s − s∗| 6 δ|M(m, k)) > λ,
or intuitively the true similarity s under the distribution
p(s|M(m, k)) is almost located near the mode, s∗ =
argmaxs p(s|M(m, k)), the similarity evaluation is early
stopped and such a pair is regarded as similar enough,
which is an alternative of computing the exact similarity
of such a pair in the original space. The paper [113] gives
two examples of Bayesian LSH for the Jaccard similarity
and the arccos similarity for which p(s|M(m, k)) are
instantiated.

4.1.7 Fast LSH

Fast LSH [19] presents two algorithms, ACHash and
DHHash, that formulate L K-bits compound hash func-
tions. ACHash pre-conditions the input vector using a
random diagonal matrix and a Hadamard transform,
and then applies a sparse Gaussian matrix followed by
a rounding. DHHash does the same pre-conditioning
process and then applies a random permutation, fol-
lowed by a random diagonal Gaussian matrix and an

another Hadamard transform. It is shown that it takes
only O(d log d+KL) for both ACHash and DHHash to
compute hash codes instead of O(dKL). The algorithms
are also extended to the angle-based similarity, where
the query time to ǫ-approximate the angle between two
vectors is reduced from O(d/ǫ2) to O(d log 1/ǫ+ 1/ǫ2).

4.1.8 Bi-level LSH

The first level of bi-level LSH [106] uses a random-
projection tree to divide the dataset into subgroups with
bounded aspect ratios. The second level is an LSH table,
which is basically implemented by randomly projecting
data points into a low-dimensional space and then par-
titioning the low-dimensional space into cells. The table
is enhanced using a hierarchical structure. The hierarchy,
implemented using the space filling Morton curve (a.k.a.,
the Lebesgue or Z-order curve), is useful when there
are not enough candidates retrieved for the multi-probe
LSH algorithm. In addition, the E8 lattice is used for
partitioning the low-dimensional space to overcome the
curse of dimensionality caused by the basic ZM lattice.

4.2 SortingKeys-LSH

SortingKeys LSH [88] aims at improving the search
scheme of LSH by reducing random I/O operations
when retrieving candidate data points. The paper defines
a distance measure between compound hash keys to
estimate the true distance between data points, and
introduces a linear order on the set of compound hash
keys. The method sorts all the compound hash keys
in ascending order and stores the corresponding data
points on disk according to this order, then close data
points are likely to be stored locally. During ANN search,
a limited number of pages on the disk, which are “close”
to the query in terms of the distance defined between
compound hash keys, are needed to be accessed for
sufficient candidate generation, leading to much shorter
response time due to the reduction of random I/O
operations, yet with higher search accuracy.

4.3 Analysis and Modeling

4.3.1 Modeling LSH

The purpose [21] is to model the recall and the selectivity
and apply it to determine the optimal parameters, the
window size r, the number of hash functions K forming
the compound hash function, the number of tables L,
and the number of bins T probed in each table for
E2LSH. The recall is defined as the percentage of the
true NNs in the retrieved NN candidates. The selectivity
is defined as the ratio of the number of the retrieved
candidates to the number of the database points. The
two factors are formulated as a function of the data dis-
tribution, for which the squared L2 distance is assumed
to follow a Gamma distribution that is estimated from
the real data. The estimated distributions of 1-NN, 2-
NNs, and so on are used to compute the recall and

10

selectivity. Finally, the optimal parameters are computed
to minimize the selectivity with the constraint that the
recall is not less than a required value. A similar and
more complete analysis for parameter optimization is
given in [119]

4.3.2 The difficulty of nearest neighbor search

[36] introduces a new measure, relative contrast for
analyzing the meaningfulness and difficulty of nearest
neighbor search. The relative contrast for a query q,

given a dataset X is defined as Cq
r = Ex[d(q,x)]

minx(d(q,x))
. The

relative contrast expectation with respect to the queries

is given as follows, Cr =
Ex,q[d(q,x)]

Eq[minx(d(q,x))]
.

Define a random variable R =
∑d

j=1 Rj =
∑d

j=1 Eq[‖xj − qj‖pp], and let the mean be µ and the

variance be σ2. Define the normalized variance: σ′2 = σ2

µ2 .
It is shown that if {R1, R2, · · · , Rd} are independent
and satisfy Lindeberg’s condition, the expected relative
contrast is approximated as,

Cr ≈ 1

[1 + φ−1(1
N + φ(−1

σ′))σ′]
1
p

, (20)

where N is the number of database points, φ(·) is the
cumulative density function of standard Gaussian, σ′ is
the normalized standard deviation, and p is the distance
metric norm. It can also be generalized to the relative
contrast for the kth nearest neighbor,

Ck
r =

Ex,q[d(q,x)]

Eq[k-minx(d(q,x))]
≈ 1

[1 + φ−1(k
N + φ(−1

σ′))σ′]
1
p

,

(21)

where k-minx(d(q,x)) is the distance of the query to the
kth nearest neighbor.

Given the approximate relative contrast, it is clear how
the data dimensionality d, the database size N , the metric
norm p, and the sparsity of the data vector (determining
σ′) influence the relative contrast.

It is shown that LSH, under the ℓp-norm distance, can
find the exact nearest neighbor with probability 1− δ by
returning O(log 1

δn
g(Cr)) candidate points, where g(Cr)

is a function monotonically decreasing with Cr, and
that, in the context of linear hashing sign(wTx+ b), the
optimal projection that maximizes the relative contrast is

w∗ = argmaxw
wTΣxw
wTSNNw

, where Σx = 1
N

∑N
i=1 xix

T
i and

SNN = Eq[(q−NN(q))(q−NN(q))T], subject to SNN = I,
w∗ = argmaxw wTΣxw.

The LSH scheme has very nice theoretic properties.
However, as the hash functions are data-independent,
the practical performance is not as good as expected
in certain applications. Therefore, there are a lot of
followups that learn hash functions from the data.

5 LEARNING TO HASH: HAMMING EMBED-
DING AND EXTENSIONS

Learning to hash is a task of learning a compound
hash function, y = h(x), mapping an input item x

to a compact code y, such that the nearest neighbor
search in the coding space is efficient and the result
is an effective approximation of the true nearest search
result in the input space. An instance of the learning-to-
hash approach includes three elements: hash function,
similarity measure in the coding space, and optimization
criterion. Here The similarity in similarity measure is a
general concept, and may mean distance or other forms
of similarity.

Hash function. The hash function can be based on
linear projection, spherical function, kernels, and neural
network, even a non-parametric function, and so on.
One popular hash function is a linear hash function:
y = sign(wTx) ∈ {0, 1}, where sign(wTx) = 1 if
wTx > 0 and sign(wTx) = 0 otherwise. Another widely-
used hash function is a function based on nearest vector
assignment: y = argmink∈{1,··· ,K} ‖x − ck‖2 ∈ Z, where
{c1, · · · , cK} is a set of centers, computed by some
algorithm, e.g., K-means.

The choice of hash function types influences the effi-
ciency of computing hash codes and the flexility of the
hash codes, or the flexibility of partitioning the space.
The optimization of hash function parameters is depen-
dent to both distance measure and distance preserving.

Similarity measure. There are two main distance mea-
sure schemes in the coding space. Hamming distance
with its variants, and Euclidean distance. Hamming
distance is widely used when the hashing function maps
the data point into a Hamming code y for which each
entry is either 1 or 0, and is defined as the number of bits
at which the corresponding values are different. There
are some other variants, such as weighted Hamming
distance, distance table lookup, and so on. Euclidean
distance is used in the approaches based on nearest
vector assignment and evaluated between the vectors
corresponding to the hash codes, i.e., the nearest vectors
assigned to the data vectors, which is efficiently com-
puted by looking up a precomputed distance table. There
is a variant, asymmetric Euclidean distance, for which
only one vector is approximated by its nearest vector
while the other vector is not approximated. There are
also some works learning a distance table between hash
codes by assuming the hash codes are already given.

Optimization criterion. The approximate nearest neigh-
bor search result is evaluated by comparing it with the
true search result, that is the result according to the
distance computed in the input space. Most similarity
preserving criteria design various forms as the surrogate
of such an evaluation.

The straightforward form is to directly compare the
order of the ANN search result with that of the true
result (using the reference data points as queries), which
called the order-preserving criterion. The empirical re-
sults show that the ANN search result usually has
higher probability to approach the true search result if
the distance computed in the coding space accurately
approximates the distance computed in the input space.

11

TABLE 1

Hash functions

type abbreviation

linear LI
bilinear BILI
Laplacian eigenfunction LE
kernel KE
quantizer QU
1D quantizer OQ
spline SP
neural network NN
spherical function SF
classifier CL

TABLE 2

Distance measures in the coding space

type abbreviation

Hamming distance HD
normalized Hamming distance NHD
asymmetric Hamming distance AHD

weighted Hamming distance WHD
query-dependent weighted Hamming distance QWHD

normalized Hamming affinity NHA
Manhattan MD

asymmetric Euclidean distance AED
symmetric Euclidean distance SED

lower bound LB

This motivates the so-called similarity alignment crite-
rion, which directly minimizes the differences between
the distances (similarities) computed in the coding and
input space. An alternative surrogate is coding consistent
hashing, which penalizes the larger distances in the
coding space but with the larger similarities in the input
space (called coding consistent to similarity, shorted as
coding consistent as a major of algorithms use it) and
encourages the smaller (larger) distances in the coding
space but with the smaller (larger) distances in the input
space (called coding consistent to distance). One typical
approach, the space partitioning approach, assumes that
space partitioning has already implicitly preserved the
similarity to some degree.

Besides similarity preserving, another widely-used cri-
terion is coding balance, which means that the reference
vectors should be uniformly distributed in each bucket
(corresponding to a hash code). Other related criteria,
such as bit balance, bit independence, search efficiency,
and so on, are essentially (degraded) forms of coding
balance.

In the following, we review Hamming bedding based
hashing algorithms. Table 4 presents the summary of the
algorithms reviewed from Section 5.1 to Section 5.5, with
some concepts given in Tables 1, 1 and 3.

5.1 Coding Consistent Hashing

Coding consistent hashing refers to a category of
hashing functions based on minimizing the similarity
weighted distance, sijd(yi,yj) (and possibly maximizing
dijd(yi,yj)), to formulate the objective function. Here,

TABLE 3

Optimization criterion.

type abbreviation

Hamming embedding
coding consistent CC
coding consistent to distance CCD
code balance CB
bit balance BB
bit uncorrelation BU
projection uncorrelation PU
mutual information maximization MIM
minimizing differences between distances MDD
minimizing differences between similarities MDS
minimizing differences between similarity distribution MDSD
hinge-like loss HL
rank order loss ROL
triplet loss TL
classification error CE
space partitioning SP
complementary partitioning CP
pair-wise bit balance PBB
maximum margin MM
Quantization
bit allocation BA
quantization error QE
equal variance EV
maximum cosine similarity MCS

sij is the similarity between xi and xj computed from
the input space or given from the semantic meaning.

5.1.1 Spectral hashing

Spectral hashing [135], the pioneering coding consistency
hashing algorithm, aims to find an easy-evaluated hash
function so that (1) similar items are mapped to similar
hash codes based on the Hamming distance (coding
consistency) and (2) a small number of hash bits are
required. The second requirement is a form similar to
coding balance, which is transformed to two require-
ments: bit balance and bit uncorrelation. The balance
means that each bit has around 50% chance of being 1
or 0 (−1). The uncorrelation means that different bits are
uncorrelated.

Let {yn}n = 1N be the hash codes of the N data items,
each yn be a binary vector of length M . Let sij be the
similarity that correlates with the Euclidean distance.
The formulation is given as follows:

min
Y

Trace(Y(D − S)YT) (22)

s. t. Y1 = 0 (23)

YYT = I (24)

yim ∈ {−1, 1}, (25)

where Y = [y1y2 · · ·yN], S is a matrix [sij] of size
N ×N , D is a diagonal matrix Diag(d11, · · · , dNN), and

dnn =
∑N

i=1 sni. D − S is called Laplacian matrix and

Trace(Y(D−S)YT) =
∑N

i=1

∑N
j=1 wij‖yi−yj‖22. Y1 = 0

corresponds to the bit balance requirement. YYT = I

corresponds to the bit uncorrelation requirement.
Rather than solving the problem Equation 25 directly,

a simple approximate solution with the assumption of

12

TABLE 4

A summary of hashing algorithms. ∗ means that hash function learning does not explicitly rely on the distance

measure in the coding space. S = semantic similarity. E = Euclidean distance. sim. = similarity. dist. = distance.

method input sim. hash function dist. measure optimization criteria

spectral hashing [135] E LE HD CC + BB + BU
kernelized spectral hashing [37] S, E KE HD CC + BB + BU
Hypergraph spectral hashing [153], [89] S CL HD CC + BB + BU
Topology preserving hashing [145] E LI HD CC + CCD + BB + BU
hashing with graphs [83] S KE HD CC + BB
ICA Hashing [35] E LI, KE HD CC + BB + BU + MIM
Semi-supervised hashing [125], [126], [127] S, E LI HD CC + BB + PU
LDA hash [122] S LI HD CC + PU
binary reconstructive embedding [63] E LI, KE HD MDD
supervised hashing with kernels [82] E, S LI, KE HD MDS
spec hashing [78] S CL HD MDSD
bilinear hyperplane hashing [84] ACS BILI HD MDS
minimal loss hashing [101] E, S LI HD HL
order preserving hashing [130] E LI HD ROL
Triplet loss hashing [103] E, S Any HD, AHD TL
listwise supervision hashing [128] E, S LI HD TL
Similarity sensitive coding (SSC) [114] S CL WHD CE
parameter sensitive hashing [115] S CL WHD CE
column generation hashing [75] S CL WHD CE
complementary projection hashing [55]∗ E LI, KE HD SP + CP + PBB
label-regularized maximum margin hashing [96]∗ E, S KE HD SP + MM + BB
Random maximum margin hashing [57]∗ E LI, KE HD SP + MM + BB
spherical hashing [38]∗ E SF NHD SP + PBB
density sensitive hashing [79]∗ E LI HD SP + BB
multi-dimensional spectral hashing [134] E LE WHD CC + BB + BU
Weighted hashing [131] E LI WHD CC + BB + BU
Query-adaptive bit weights [53], [54] S LI (all) QWHD CE
Query adaptive hashing [81] S LI QWHD CE

uniform data distribution is presented in [135]. The
algorithm is given as follows:

1) Find the principal components of the N d-
dimensional reference data items using principal
component analysis (PCA).

2) Compute the M 1D Laplacian eigenfunctions with
the smallest eigenvalues along each PCA direction.

3) Pick the M eigenfunctions with the smallest eigen-
values among Md eigenfunctions.

4) Threshold the eigenfunction at zero, obtaining the
binary codes.

The 1D Laplacian eigenfunction for the case of
uniform distribution on [rl, rr] is φf (x) = sin(π2 +
fπ

rr−rl
x) and the corresponding eigenvalue is λf = 1 −

exp (− ǫ2

2 |
fπ

rr−rl
|2), where f = 1, 2, · · · is the frequency

and ǫ is a fixed small value.

The assumption that the data is uniformly distributed
does not hold in real cases, resulting in that the per-
formance of spectral hashing is deteriorated. Second,
the eigenvalue monotonously increases with respect to
| f
rr−rl

|2, which means that the PCA direction with a
large spread (|rr − rl|) and a lower frequency (f) is
preferred. This means that there might be more than
one eigenfunctions picked along a single PCA direction,
which breaks the uncorrelation requirement, and thus
the performance is influenced. Last, thresholding the
eigenfunction φf (x) = sin(π2 + fπ

rr−rl
x) at zero leads to

that near points are mapped to different values and even
far points are mapped to the same value. It turns out

that the hamming distance is not well consistent to the
Euclidean distance.

In the case that the spreads along the top M PCA
direction are the same, the spectral hashing algorithm
actually partitions each direction into two parts using
the median (due to the bit balance requirement) as the
threshold. It is noted that, in the case of uniform distri-
butions, the solution is equivalent to thresholding at the
mean value. In the case that the true data distribution
is a multi-dimensional isotropic Gaussian distribution,
it is equivalent to iterative quantization [30], [31] and
isotropic hashing [60].

Principal component hashing [93] also uses the princi-
pal direction to formulate the hash function. Specifically,
it partitions the data points into K buckets so that
the projected points along the principal direction are
uniformly distributed in the K buckets. In addition,
bucket overlapping is adopted to deal with the boundary
issue (neighboring points around the partitioning posi-
tion are assigned to different buckets). Different from
spectral hashing, principal component hashing aims at
constructing hash tables rather than compact codes.

The approach in [74], spectral hashing with seman-
tically consistent graph first learns a linear transform
matrix such that the similarities computed over the
transformed space is consistent to the semantic similarity
as well as the Euclidean distance-based similarity, then
applies spectral hashing to learn hash codes.

13

5.1.2 Kernelized spectral hashing

The approach introduced in [37] extends spectral hash-
ing by explicitly defining the hash function using ker-
nels. The mth hash function is given as follows,

ym = hm(x) (26)

= sign(

Tm
∑

t=1

wmtK(smt,x)− bm) (27)

= sign(

Tm
∑

t=1

wmt < φ(smt), φ(x) > −bm) (28)

= sign(< vm, φ(x) > −bm). (29)

Here {smt}Tm

t=1 is the set of randomly-sampled anchor
items for forming the hash function, and its size Tm is
usually the same for all M hash functions. K(·, ·) is a
kernel function, and φ(·) is its corresponding mapping
function. vm = [wm1φ(sm1) · · ·wmTm

φ(smTm
)]T .

The objective function is written as:

min
{wmt}

Trace(Y(D − S)YT) +
M
∑

m=1

‖vm‖22, (30)

The constraints are the same to those of spectral hashing,
and differently the hash function is given in Equation 29.
To efficiently solve the problem, the sparse similarity
matrix W and the Nyström algorithm are used to reduce
the computation cost.

5.1.3 Hypergraph spectral hashing

Hypergraph spectral hashing [153], [89] extends spec-
tral hashing from an ordinary (pair-wise) graph to a
hypergraph (multi-wise graph), formulates the prob-
lem using the hypergraph Laplacian (replace the graph
Laplacian [135], [134]) to form the objective function,
with the same constraints to spectral hashing. The al-
gorithm in [153], [89] solves the optimization problem,
by relaxing the binary constraint eigen-decomposing the
the hypergraph Laplacian matrix, and thresholding the
eigenvectors at zero. It computes the code for an out-of-
sample vector, by regarding each hash bit as a class label
of the data vector and learning a classifier for each bit. In
essence, this approach is a two-step approach that sepa-
rates the optimization of coding and hash functions. The
remaining challenge lies in how to extend the algorithm
to large scale because the eigen-decomposition step is
quite time-consuming.

5.1.4 Sparse spectral hashing

Sparse spectral hashing [116] combines sparse principal
component analysis (Sparse PCA) and Boosting Simi-
larity Sensitive Hashing (Boosting SSC) into traditional
spectral hashing. The problem is formulated as as thresh-
olding a subset of eigenvectors of the Laplacian graph by
constraining the number of nonzero features. The convex
relaxation makes the learnt codes globally optimal and
the out-of-sample extension is achieved by learning the
eigenfunctions.

5.1.5 ICA hashing

The idea of independent component analysis (ICA)
Hashing [35] starts from coding balance. Intuitively cod-
ing balance means that the average number of data items
mapped to each hash code is the same. The coding
balance requirement is formulated as maximizing the en-
tropy entropy(y1, y2, · · · , yM), and subsequently formu-
lated as bit balance: E(ym) = 0 and mutual information
minimization: I(y1, y2, · · · , yM).

The approach approximates the mutual information
using the scheme similar to the one widely used inde-
pendent component analysis. The mutual information
is relaxed: I(y1, y2, · · · , yM) = I(wT

1 x,w
T
2 x), · · · ,wT

Mx)
and is approximated as maximizing

M
∑

m=1

‖c− 1

N

N
∑

n=1

g(WTxn)‖22, (31)

under the constraint of whiten condition (which can be
derived from bit uncorrelation), wT

i E(xxT)wj = δ[i =
j], c is a constant, g(u) is some non-quadratic functions,

such that g(u) = − exp (−u2

2) or g(u) = log cosh(u).
The whole objective function together preserving the

similarities as done in spectral hashing is written as
follows,

max
W

M
∑

m=1

‖c− 1

N

N
∑

n=1

g(WTxn)‖22 (32)

s.t. wT
i E(xxT)wj = δ[i = j] (33)

trace(WTΣW) ≤ η. (34)

The paper [35] also presents a kernelized version by
using the kernel hash function.

5.1.6 Semi-supervised hashing

Semi-supervised hashing [125], [126], [127] extends spec-
tral hashing into the semi-supervised case, in which
some pairs of data items are labeled as belonging to
the same semantic concept, some pairs are labeled as
belonging to different semantic concepts. Specifically,
the similarity weight sij is assigned to 1 and −1 if
the corresponding pair of data items, (xi,xj), belong to
the same concept, and different concepts, and 0 if no
labeling information is given. This leads to a formulation
maximizing the empirical fitness,

∑

i,j∈{1,··· ,N}
sij

M
∑

m=1

hm(xi)hm(xj), (35)

where hk(·) ∈ {1,−1}. It is easily shown
that this objective function 35 is equivalent to

minimizing
∑

i,j∈{1,··· ,N} sij
∑M

m=1
(hm(xi)−hm(xj))

2

2 =
1
2

∑

i,j∈{1,··· ,N} sij‖yi − yj‖22.
In addition, the bit balance requirement (over each

hash bit) is explained as maximizing the variance over
the hash bits. Assuming the hash function is a sign
function, h(x) = sign(wTx), variance maximization is

14

relaxed as maximizing the variance of the projected data
wTx. In summary, the formulation is given as

trace[WTXlSX
T
l W] + η trace[WTXXTW], (36)

where S is the similarity matrix over the labeled data Xl,
X is the data matrix withe each column corresponding
to one data item, and η is a balance variable.

In the case that W is an orthogonal matrix (the
columns are orthogonal to each other, WTW = I,
which is called projection uncorrelation) (equivalent to
the independence requirement in spectral hashing), it is
solved by eigen-decomposition. The authors present a
sequential projection learning algorithm by embedding
WTW = I into the objective function as a soft constraint

trace[WTXlSX
T
l W] + η trace[WTXXTW]

+ ρ‖WTW − I‖2F , (37)

where ρ is a tradeoff variable. An extension of semi-
supervised hashing to nonlinear hash functions is pre-
sented in [136], where the kernel hash function, h(x) =
sign(

∑T
t=1 wt < φ(st), φ(x) > −b), is used.

5.1.7 LDA hash

LDA (linear discriminant analysis) hash [122] aims to
find the binary codes by minimizing the following ob-
jective function,

αE{‖yi − yj‖2|(i, j) ∈ P} − E{‖yi − yj‖2|(i, j) ∈ N},
(38)

where y = sign(WTx + b), P is the set of positive
(similar) pairs, and N is the set of negative (dissimilar)
pairs.

LDA hash consists of two steps: (1) finding the projec-
tion matrix that best discriminates the nearer pairs from
the farther pairs, which is a form of coding consistency,
and (2) finding the threshold to generate binary hash
codes. The first step relaxes the problem, by removing
the sign and minimizes a related function,

αE{‖WTxi −WTxj‖2|(i, j) ∈ P}
− E{‖WTxi −WTxj‖2|(i, j) ∈ N}. (39)

This formulation is then transformed to an equivalent
form,

α trace{WTΣpW} − trace{WTΣnW}, (40)

where Σp = E{(xi − xj)(xi − xj)
T |(i, j) ∈ P} and

Σn = E{(xi−xj)(xi−xj)
T |(i, j) ∈ N}. There are two so-

lutions given in [122]: minimizing trace{WTΣpΣ
−1
n W},

which does not need to specify α, and minimizing
trace{WT (αΣp −Σn)}.

The second step aims to find the threshold by mini-
mizing

αE{sign{WTxi − b} − sign{WTxj − b}|(i, j) ∈ P}
(41)

−E{sign{WTxi − b} − sign{WTxj − b}|(i, j) ∈ N},
(42)

which is then decomposed into K subproblems each
of which finds bk for each hash function wT

k x − bk.
The subproblem can be exactly solved using simple 1D
search.

5.1.8 Topology preserving hashing

Topology preserving hashing [145] formulates the hash-
ing problem by considering two forms of coding con-
sistency: preserving the neighborhood ranking and pre-
serving the data topology.

The first coding consistency form is presented as a
maximization problem,

1

2

∑

i,j,s,t

sign(doi,j − dos,t) sign(d
h
i,j − dhs,t) (43)

≈ 1

2

∑

i,j,s,t

(doi,j − dos,t)(d
h
i,j − dhs,t) (44)

where do and dh are the distances in the original space
and the Hamming space. This ranking preserving formu-
lation, based on the rearrangement inequality, is trans-
formed to

1

2

∑

i,j

doi,jd
h
i,j (45)

=
1

2

∑

i,j

doi,j‖yi − yj‖22 (46)

= trace(YLtY
T), (47)

where Lt = Dt−St, Dt = diag(St1) and st(i, j) = f(doij)
with f(·) is monotonically non-decreasing.

Data topology preserving is formulated in a way
similar to spectral hashing, by minimizing the following
function

1

2

∑

ij

sij‖yi − yj‖22 (48)

= trace(YLsY
T), (49)

where Ls = Ds − Ss, Ds = diag(Ss1), and ss(i, j) is the
similarity between xi and xj in the original space.

Assume the hash function is in the form of sign(WTx)
(the following formulation can also be extended to the
kernel hash function), the overall formulation, by a
relaxation step sign(WTx) ≈ WTx, is given as follows,

max
trace(WTX(Lt + αI)XTW)

trace(WTXLsXTW)
, (50)

where αI introduces a regularization term,
trace(WTXXTW), similar to the bit balance condition
in semi-supervised hashing [125], [126], [127].

5.1.9 Hashing with graphs

The key ideas of hashing with graphs [83] consist of us-
ing the anchor graph to approximate the neighborhood
graph, (accordingly using the graph Laplacian over the
anchor graph to approximate the graph Laplacian of the
original graph) for fast computing the eigenvectors and

15

using a hierarchical hashing to address the boundary
issue for which the points around the hash plane are
assigned different hash bits. The first idea aims to solve
the same problem in spectral hashing [135], present an
approximate solution using the anchor graph rather than
the PCA-based solution with the assumption that the
data points are uniformly distributed. The second idea
breaks the independence constraint over hash bits.

Compressed hashing [80] borrows the idea about an-
chor graph in [83] uses the anchors to generate a sparse
representation of data items by computing the kernels
with the nearest anchors and normalizing it so that the
summation is 1. Then it uses M random projections and
the median of the projections of the sparse projections
along each random projection as the bias to generate the
hash functions.

5.2 Similarity Alignment Hashing

Similarity alignment hashing is a category of hashing
algorithms that directly compare the similarities (dis-
tances) computed from the input space and the coding
space. In addition, the approach aligning the distance
distribution is also discussed in this section. Other al-
gorithms, such as quantization, can also be interpreted
as similarity alignment, and for clarity, are described in
separate paragraphs.

5.2.1 Binary reconstructive embedding

The key idea of binary reconstructive embedding [63]
is to learn the hash codes such that the difference be-
tween the Euclidean distance in the input space and the
Hamming distance in the hash codes is minimized. The
objective function is formulated as follows,

min
∑

(i,j)∈N
(
1

2
‖xi − xj‖2f − 1

M
‖yi − yj‖22)2. (51)

The set N is composed of point pairs, which includes
both the nearest neighbors and other pairs.

The hash function is parameterized as:

ynm = hm(x) = sign(

Tm
∑

t=1

wmtK(smt,x)), (52)

where {smt}Tm

t=1 are sampled data items forming the
hashing function hm(·) ∈ {h1(·), · · · , hM (·)}, K(·, ·) is a
kernel function, and {wmt} are the weights to be learnt.

Instead of relaxing the sign function to a continuous
function, an alternative optimization scheme is presented
in [63]: fixing all but one weight wmt and optimizing the
problem 51 with respect to wmt. It is shown that an exact,
optimal update to this weight wmt (fixing all the other
weights) can be achieved in time O(N logN + n|N |).

5.2.2 Supervised hashing with kernels

The idea of supervised hashing with kernels [82] con-
sists of two aspects: (1) using the kernels to form the
hash functions, which is similar to binary reconstructive

embedding [63], and (2) minimizing the differences be-
tween the Hamming affinity over the hash codes and
the similarity over the data items, which has two types,
similar (s = 1) or dissimilar (s = −1) e.g., given by the
Euclidean distance or the labeling information.

The hash function is given as follows,

ynm = hm(xn) = sign(

Tm
∑

t=1

wmtK(smt,x) + b), (53)

where b is the bias. The objective function is given as the
following,

min
∑

(i,j)∈L
(sij − affinity(yi,yj))

2, (54)

where L is the set of labeled pairs, affinity(yi,yj) =M−
‖yi − yj‖1 is the Hamming affinity, and y ∈ {1,−1}M .

Kernel reconstructive hashing [141] extends this tech-
nique using a normalized Gaussian kernel similarity.

5.2.3 Spec hashing

The idea of spec hashing [78] is to view each pair of
data items as a sample and their (normalized) similarity
as the probability, and to find the hash functions so
that the probability distributions from the input space
and the Hamming space are well aligned. Let siij be the
normalized similarity (

∑

ij s
i
ij = 1) given in the input

space, and shij be the normalized similarity computed in
the Hamming space, shij =

1
Z exp (−λdisth(i, j)), where Z

is a normalization variable Z =
∑

ij exp (−λdisth(i, j)).
Then, the objective function is given as follows,

min KL({siij}||{shij})
= −

∑

ij

λsiij log s
h
ij (55)

= λ
∑

ij

suij disth(i, j) + log
∑

ij

exp (−λdisth(i, j)).

(56)

Supervised binary hash code learning [24] presents
a supervised binary hash code learning algorithm us-
ing Jensen Shannon Divergence which is derived from
minimizing an upper bound of the probability of Bayes
decision errors.

5.2.4 Bilinear hyperplane hashing

Bilinear hyperplane hashing [84] transforms the database
vector (the normal of the query hyperplane) into a high-
dimensional vector,

ā = vec(aaT)[a21, a1a2, · · · , a1ad, a2a1, a22, a2a3, · · · , a2d].
(57)

The bilinear hyperplane hashing family is defined as
follows,

h(z) =

{

sign(uT zzTv) if z is a database vector
sign(−uT zzTv) if z is a hyperplane normal.

(58)

16

Here u and v are sampled independently from a stan-
dard Gaussian distribution. It is shown to be r, r(1 +

ǫ), 12 − 2r
π2 ,

1
2 − 2r(1+ǫ)

π2 -sensitive to the angle distance
dθ(x,n) = (θx,n − π

2)
2, where r, ǫ > 0.

Rather than randomly drawn, u and u can be also
learnt according to the similarity information. A formu-
lation is given in [84] as the below,

min
{uk,vk}K

k=1

‖ 1

K
YTY − S‖, (59)

where Y = [y1,y2, · · · ,yN] and S is the similarity
matrix,

sij =

1 if cos(θxi,xj
) > t1

−1 if cos(θxi,xj
) 6 t2

2| cos(θxi,xj
)| − 1 otherwise,

(60)

The above problem is solved by relaxing sign with the
sigmoid-shaped function and finding the solution with
the gradient descent algorithm.

5.3 Order Preserving Hashing

This section reviews the category of hashing algorithms
that depend on various forms of maximizing the align-
ment between the orders of the reference data items
computed from the input space and the coding space.

5.3.1 Minimal loss hashing

The key point of minimal loss hashing [101] is to use
a hinge-like loss function to assign penalties for similar
(or dissimilar) points when they are too far apart (or too
close). The formulation is given as follows,

min
∑

(i,j)∈L
I[sij = 1]max(‖yi − yi‖1 − ρ+ 1, 0)

+ I[sij = 0]λmax(ρ− ‖yi − yi‖1 + 1, 0), (61)

where ρ is a hyper-parameter and is uses as a threshold
in the Hamming space that differentiates neighbors from
non-neighbors, λ is also a hyper-parameter that controls
the ratio of the slopes for the penalties incurred for simi-
lar (or dissimilar) points. Both the two hyper-parameters
are selected using the validation set.

Minimal loss hashing [101] solves the problem by
building the convex-concave upper bound of the
above objective function and optimizing it using the
perceptron-like learning procedure.

5.3.2 Rank order loss

The idea of order preserving hashing [130] is to learn
hash functions by maximizing the alignment between
the similarity orders computed from the original space
and the ones in the Hamming space. To formulate the
problem, given a data point xn, the database points X
are divided into M categories, (Ce

n0, Ce
n1, · · · , Ce

nM) and
(Ch

n0, Ch
n1, · · · , Ch

nM), using the distance in the original

space and the distance in the Hamming space, respec-
tively. The objective function maximizing the alignment
between the two categories is given as follows,

L(h(·);X) (62)

=
∑N

n=1
L(h(·);xn) (63)

=
∑N

n=1

∑M−1

m=0
L(h(·);xn,m) (64)

=
∑N

n=1

∑M−1

m=0
(|N e

nm −N h
nm|+ λ|N h

nm −N e
nm|), (65)

where N e
nm = ∪m

j=0Ce
nj and N h

nm = ∪m
j=0Ch

nj .
Given the compound hash function defined as below,

h(x) = sign(WTx+ b) (66)

= [sign(wT
1 x+ b1) · · · sign(wT

mx+ bm)]T ,

the loss is transformed to:

L(W;xn, i)

=
∑

x′∈N e
ni

sign(‖h(xn)− h(x′)‖22 − i)

+ λ
∑

x′ /∈N e
ni

sign(i+ 1− ‖h(xn)− h(x′)‖22). (67)

This problem is solved by dropping the sign function
and using the quadratic penalty algorithm [130].

5.3.3 Triplet loss hashing

Triplet loss hashing [103] formulates the hashing prob-
lem by preserving the relative similarity defined over
triplets of items, (x,x+,x−), where the pair (x,x+) is
more similar than the pair (x,x−). The triplet loss is
defined as

ℓtriplet(y,y
+,y−) = max(‖y − y+‖1 − ‖y − y−‖1 + 1, 0).

(68)

Suppose the compound hash function is defined as
h(x;W), the objective function is given as follows,

∑

(x,x+,x−)∈D
ℓtriplet(h(x;W),h(x+;W),h(x−;W))

+
λ

2
trace (WTW). (69)

The problem is optimized using the algorithm similar to
minimal loss hashing [101]. The extension to asymmetric
Hamming distance is also discussed in [101].

5.3.4 Listwise supervision hashing

Similar to [101], listwise supervision hashing [128] also
uses triplets of items to approximate the listwise loss.
The formulation is based on a triplet tensor S defined as
follows,

s(i; j, k) =

1 if sim(xi; i) > sim(xi; j)
−1 if sim(xi; i) < sim(xi; j)
0 if sim(xi; i) = sim(xi; j).

(70)

The goal is to minimize the following objective func-
tion,

−
∑

i,j,k

h(xi)
T (h(xj)− h(xk))sijk , (71)

17

where is solved by dropping the sign operator in
h(x;W) = sign(WTx).

5.3.5 Similarity sensitive coding

Similarity sensitive coding (SSC) [114] aims to learn an
embedding, which can be called weighted Hamming
embedding: h(x) = [α1h(x1) α2h(x2) · · · αMh(xM)] that
is faithful to a task-specific similarity. An example algo-
rithm, boosted SSC, uses adaboost to learn a classifier.
The output of each weak learner on an input item is a
binary code, and the outputs of all the weak learners
are aggregated as the hash code. The weight of each
weak learner forms the weight in the embedding, and
is used to compute the weighted Hamming distance.
Parameter sensitive hashing [115] is a simplified version
of SSC with the standard LSH search procedure instead
of the linear scan with weighted Hamming distance and
uses decision stumps to form hash functions with thresh-
old optimally decided according to the information of
similar pairs, dissimilar pairs and pairs with undefined
similarities. The forgiving hashing approach [6], [7],
[8] extends parameter sensitive hashing and does not
explicitly create dissimilar pairs, but instead relies on the
maximum entropy constraint to provide that separation.

A column generation algorithm, which can be used
to solve adaboost, is presented to simultaneously learn
the weights and hash functions [75], with the following
objective function

min
α,ζ

N
∑

i=1

ζi + C‖α‖p (72)

s. t. α > 0, ζ ≥ 0, (73)

dh(xi,x
−
i)− dh(xi,x

+
i) > 1− ζi∀i. (74)

Here ‖ · ‖l is a ℓp norm, e.g., l = 1, 2,∞.

5.4 Regularized Space Partitioning

Almost all hashing algorithms can be interpreted from
the view of partitioning the space. In this section, we
review the category of hashing algorithms that focus on
pursuiting effective space partitioning without explicitly
evaluating the distance in the coding space.

5.4.1 Complementary projection hashing

Complementary projection hashing [55] computes the
mth hash function according to the previously computed
(m − 1) hash functions, using a way similar to comple-
mentary hashing [139], checking the distance of the point
to the previous (m − 1) partition planes. The penalty
weight for xn when learning the mth hash function is
given as

umn = 1 +
m−1
∑

j=1

H(ǫ − |wT
mxn + b|), (75)

where H(·) = 1
2 (1 + sign(·)) is a unit function.

Besides, it generalizes the bit balance condition, for
each hit, half of points are mapped to −1 and the rest
mapped to 1, and introduces a pair-wise bit balance
condition to approximate the coding balance condition,
i.e. every two hyperplanes spit the space into four sub-
spaces, and each subspace contains N/4 data points. The
condition is guaranteed by

N
∑

n=1

h1(xn) = 0, (76)

N
∑

n=1

h2(xn) = 0, (77)

N
∑

n=1

h1(xn)h2(xn) = 0. (78)

The whole formulation for updating the mth hash func-
tion is written as the following

min

N
∑

n=1

umn H(ǫ− |wT
mxn + b|) + α((

N
∑

n=1

hm(xn))
2

+

m−1
∑

j=1

(

N
∑

n=1

hj(xn)hm(xn))
2, (79)

where hm(x) = (wT
mx+ b).

The paper [55] also extends the linear hash function
the kernel function, and presents the gradient descent
algorithm to optimize the continuous-relaxed objective
function which is formed by dropping the sign function.

5.4.2 Label-regularized maximum margin hashing

The idea of label-regularized maximum margin hash-
ing [96] is to use the side information to find the hash
function with the maximum margin criterion. Specifi-
cally, the hash function is computed so that ideally one
pair of similar points are mapped to the same hash bit
and one pair of dissimilar points are mapped to different
hash bits. Let P be a set of pairs {(i, j)} labeled to be
similar. The formulation is given as follows,

min
{yi},w,b,{ξi},{ζ}

‖w‖22 +
λ1
N

N
∑

n=1

ξn +
λ2
N

∑

(i,j)∈S
ζij (80)

s. t. yi(w
Txi + b) + ξi > 1, ξi > 0, ∀i, (81)

yiyj + ζij > 0.∀(i, j) ∈ P , (82)

− l 6 wTxi + b 6 l. (83)

Here, ‖w‖22 corresponds to the maximum margin crite-
rion. The second constraint comes from the side infor-
mation for similar pairs, and its extension to dissimilar
pairs is straightforward. The last constraint comes from
the bit balance constraint, half of data items mapped to
−1 or 1.

Similar to the BRE, the hash function is defined as
h(x) = sign(

∑T
t=1 vt < φ(st), φ(x) > −b), which means

that w =
∑T

t=1 vtφ(st). This definition reduces the op-
timization cost. Constrained-concave-convex-procedure
(CCCP) and cutting plane are used for the optimization.

18

5.4.3 Random maximum margin hashing

Random maximum margin hashing [57] learns a hash
function with the maximum margin criterion, where the
positive and negative labels are randomly generated, by
randomly sampling N data items and randomly labeling
half of the items with −1 and the other half with 1.
The formulation is a standard SVM formulation that is
equivalent to the following form,

max
1

‖w‖2
min[

N′

2

min
i=1

(wTx+
i + b),

N′

2

min
i=1

(−wTx−
i − b)], (84)

where {x+
i } are the positive samples and {x−

i } are
the negative samples. Using the kernel trick, the
hash function can be a kernel-based function, h(x =
sign(

∑v
i=1 αi < φ(x), φ(s) >) + b), where {s} are the

selected v support vectors.

5.4.4 Spherical hashing

The basic idea of spherical hashing [38] is to use a
hypersphere to formulate a spherical hash function,

h(x) =

{

+1 if d(p,x) 6 t
0 otherwise.

(85)

The compound hash function consists of K spherical
functions, depending on K pivots {p1, · · · ,pK} and K
thresholds {t1, · · · , tK}. Given two hash codes, y1 and
y2, the distance is computed as

‖y1 − y2‖1
yT
1 y2

, (86)

where ‖y1 − y2‖1 is similar to the Hamming distance,
i.e., the frequency that both the two points lie inside (or
outside) the hypersphere, and yT

1 y2 is equivalent to the
number of common 1 bits between two binary codes,
i.e., the frequency that both the two points lie inside the
hypersphere.

The paper [38] proposes an iterative optimization al-
gorithm to learn K pivots and thresholds such that it
satisfies a pairwise bit balanced condition:

‖{x|hk(x) = 1}‖ = ‖{x|hk(x) = 0}‖,
and

‖{x|hi(x) = b1, hj(x) = b2}‖ =
1

4
‖X‖, b1, b2 ∈ {0, 1}.

5.4.5 Density sensitive hashing

The idea of density sensitive hashing [79] is to exploit
the clustering results to generate a set of candidate hash
functions and to select the hash functions which can split
the data most equally. First, the k-means algorithm is run
over the data set, yielding K clusters with centers being
{µ1,µ2, · · · ,µK}. Second, a hash function is defined
over two clusters (µi,µj) if the center is one of the r
nearest neighbors of the other, h(x) = sign(wTx − b),
where w = µi − µj and b = 1

2 (µi + µj)
T (µi − µj). The

third step aims to evaluate if the hash function (wm, bm)
can split the data most equally, which is evaluated by the

entropy, −Pm0 logPm0 −−Pm1 logPm1, where Pm0 = n0

n
and Pm1 = 1− Pm0. n is the number of the data points,
and n0 is the number of the data points lying one
partition formed by the hyperplane of the corresponding
hash function. Lastly, L hash functions with the greatest
entropy scores are selected to form the compound hash
function.

5.5 Hashing with Weighted Hamming Distance

This section presents the hashing algorithms which eval-
uates the distance in the coding space using the query-
dependent and query-independent weighted Hamming
distance scheme.

5.5.1 Multi-dimensional spectral hashing

Multi-dimensional spectral hashing [134] seeks hash
codes such that the weighted Hamming affinity is equal
to the original affinity,

min
∑

(i,j)∈N
(wij − yT

i Λyj)
2 = ‖W −YTΛY‖2F , (87)

where Λ is a diagonal matrix, and both Λ and hash codes
{yi} are needed to be optimized.

The algorithm for solving the problem 87 to compute
hash codes is exactly the same to that given in [135].
Differently, the affinity over hash codes for multi-
dimensional spectral hashing is the weighted Hamming
affinity rather than the ordinary (isotropically weighted)
Hamming affinity. Let (d, l) correspond to the index of
one selected eigenfunction for computing the hash bit,
the l eigenfunction along the PC direction d, I = {(d, l)}
be the set of the indices of all the selected eigenfunctions.
The weighted Hamming affinity using pure eigenfunc-
tions along (PC) dimension d is computed as

affinityd(i, j) =
∑

(d,l)∈I
λdl sign(φdl(xid)) sign(φdl(xjd)),

(88)

where xid is the projection of xi along dimension d,
φdl(·) is the lth eigenfunction along dimension d, λdl is
the corresponding eigenvalue. The weighted Hamming
affinity using all the hash codes is then computed as
follows,

affinity(yi,yj) =
∏

d

(1 + affinityd(i, j))− 1. (89)

The computation can be accelerated using lookup tables.

5.5.2 Weighted hashing

Weighted hashing [131] uses the weighted Hamming
distance to evaluate the distance between hash codes,
‖αT (yi − yj)‖22. It optimizes the following problem,

min trace(diag(α)YLYT) + λ‖ 1
n
YYT − I‖2F (90)

s. t. Y ∈ {−1, 1}M×N ,YT1 = 0 (91)

‖α‖1 = 1 (92)
α1

var(y1)
=

α2

var(y2)
= · · · = αM

var(yM)
, (93)

19

where L = D − S is the Laplacian matrix. The formula-
tion is essentially similar to spectral hashing [135], and
the difference lies in including the weights for weighed
Hamming distance.

The above problem is solved by discarding the first
constraint and then binarizing y at the M medians. The
hash function wT

mx+ b is learnt by mapping the input
x to a hash bit ym.

5.5.3 Query-adaptive bit weights

[53], [54] presents a weighted Hamming distance mea-
sure by learning the weights from the query information.
Specifically, the approach learns class-specific bit weights
so that the weighted Hamming distance between the
hash codes belong the class and the center, the mean
of those hash codes is minimized. The weight for a
specific query is the average weight of the weights of the
classes that the query most likely belong to and that are
discovered using the top similar images (each of which
is associated with a semantic label).

5.5.4 Query-adaptive hashing

Query adaptive hashing [81] aims to select the hash bits
(thus hash functions forming the hash bits) according
to the query vector (image). The approach consists of
two steps: offline hash functions h(x) = sign(WTx)
({hb(x) = sign(wT

b x)}) and online hash function selec-
tion. The online hash function selection, given the query
q, is formulated as the following,

min
α

‖q−Wα‖22 + ρ‖α‖1. (94)

Given the optimal solution α∗, α∗
i = 0 means the ith

hash function is not selected, and the hash function
corresponding to the nonzero entries in α∗. A solution
based on biased discriminant analysis is given to find
W, for which more details can be found from [81].

5.6 Other Hash Learning Algorithms

5.6.1 Semantic hashing

Semantic hashing [111], [112] generate the hash codes,
which can be used to reconstruct the input data, us-
ing the deep generative model (based on the pretrain-
ing technique and the fine-tuning scheme originally
designed for the restricted Boltzmann machines). This
algorithm does not use any similarity information. The
binary codes can be used for finding similarity data as
they can be used to well reconstruct the input data.

5.6.2 Spline regression hashing

Spline regression hashing [90] aims to find a global hash
function in the kernel form, h(x) = vTφ(x), such that the
hash value from the global hash function is consistent to
those from the local hash functions that corresponds to
its neighborhood points. Each data point corresponds to
a local hash function in the form of spline regression,

hn(x =
∑t

i=1 βnipi(x)) +
∑k

i=1 αnigni(x), where {pi(x)}

are the set of primitive polynomials which can span the
polynomial space with a degree less than s, {gni(x)}
are the green functions, and {αni} and {βni} are the
corresponding coefficients. The whole formulation is
given as follows,

min
v,{hi},{yn}

N
∑

n=1

(
∑

xi∈Nn

‖hn(xi)− yi‖22 + γψn(hn)

+ λ(

N
∑

n=1

‖h(xn)− yn‖22 + γ‖v‖22). (95)

5.6.3 Inductive manifold hashing

Inductive manifold mashing [117] consists of three steps:
cluster the data items into K clusters, whose centers
are {c1, c2, · · · , cK}, embed the cluster centers into a
low-dimensional space, {y1,y2, · · · ,yK}, using existing
manifold embedding technologies, and finally the hash
function is given as follows,

h(x) = sign(

∑K
k=1 w(x, ck)yk

∑K
k=1 w(x, ck)

). (96)

5.6.4 Nonlinear embedding

The approach introduced in [41] is an exact nearest
neighbor approach, which relies on a key inequality,

‖x1 − x2‖22 > d((µ1 − µ2)
2 + (σ1 − σ2)

2), (97)

where µ = 1
d

∑d
i=1 xi is the mean of all the entries of

the vector x, and σ = 1
d

∑d
i=1(xi − µ)2 is the standard

deviation. The above inequality is generalized by divid-
ing the vector into M subvectors, with the length of
each subvector being dm, and the resulting inequality
is formulated as follows,

‖x1 − x2‖22 >

M
∑

m=1

dm((µ1m − µ2m)2 + (σ1m − σ2m)2).

(98)

In the search strategy, before computing the exact
Euclidean distance between the query and the database
point, the lower bound is first computed and is com-
pared with the current minimal Euclidean distance, to
determine if the exact distance is necessary to be com-
puted.

5.6.5 Anti-sparse coding

The idea of anti-sparse coding [50] is to learn a hash
code so that non-zero elements in the hash code as many as
possible. The binarization process is as follows. First, it
solves the following problem,

z∗ = arg min
z:Wz=x

‖z‖∞, (99)

where ‖z‖∞ = maxi∈{1,2,··· ,K} |zi|, and W is a projection
matrix. It is proved that in the optimal solution (mini-
mizing the range of the components), K − d + 1 of the
components are stuck to the limit, i.e., zi = ±‖z‖∞. The
binary code (of the length K) is computed as y = sign(z).

20

The distance between the query q and a vector x can
be evaluated based on the similarity in the Hamming
space, yT

q yx or the asymmetric similarity zTq yx. The nice
property is that the anti-sparse code allows, up to a
scaling factor, the explicit reconstruction of the original
vector x ∝ Wy.

5.6.6 Two-Step Hashing

The paper [77] presents a general two-step approach to
learning-based hashing: learn binary embedding (codes)
and then learn the hash function mapping the input item
to the learnt binary codes. An instance algorithm [76]
uses an efficient GraphCut based block search method
for inferring binary codes for large databases and trains
boosted decision trees fit the binary codes.

Self-taught hashing [144] optimizes an objective func-
tion, similar to the spectral hashing,

min trace(YLYT) (100)

s. t. YDYT = I (101)

YD1 = 0, (102)

where Y is a real-valued matrix, relaxed from the binary
matrix), L is the Laplacian matrix and D is the degree
matrix. The solution is the M eigenvectors correspond-
ing to the smallest M eigenvalues (except the trivial
eigenvalue 0), Lv = λDv. To get the binary code, each
row of Y is thresholded using the median value of
the column. To form the hash function, mapping the
vector to a single hash bit is regarded as a classification
problem, which is solved by linear SVM, sign(wTx+ b).
The linear SVM is then regarded as the hash function.

Sparse hashing [151] also is a two step approach. The
first step learns a sparse nonnegative embedding, in
which the positive embedding is encodes as 1 and the
zero embedding is encoded as 0. The formulation is as
follows,

N
∑

n=1

‖xn −PT zn‖22 + α

N
∑

i=1

N
∑

j=1

sij‖zi − zj‖22 + λ

N
∑

n=1

‖zn‖1,

(103)

where sij = exp (− ‖xi−xj‖2
2

σ2) is the similarity between xi

and xj .
The second step is to learn a linear hash function for

each hash bit, which is optimized based on the elastic
net estimator (for the mth hash function),

min
w

N
∑

n=1

‖yn −wt
mxn‖22 + λ1‖wm‖1 + λ2‖wm‖22. (104)

Locally linear hashing [43] first learns binary codes
that preserves the locally linear structures and then
introduces a locally linear extension algorithm for out-
of-sample extension. The objective function of the first
step to obtain the binary embedding Y is given as

min
Z,R,Y

trace(ZTMZ) + η‖Y − ZR‖2F (105)

s. t. Y ∈ {1,−1}N×M ,RTR = I. (106)

Here Z is a nonlinear embedding, similar to locally linear
embedding and M is a sparse matrix, M = (I−W)T (I−
W). W is the locally linear reconstruction weight matrix,
which is computed by solving the following optimiza-
tion problem for each database item,

min
wn

λ‖sTnwn‖1 +
1

2
‖xn −

∑

j∈N (xn)

wijxn‖22 (107)

s. t. wT
n1 = 1, (108)

where wn = [wn1, wn2, · · · , wnn]
T , and wnj = 0 if j /∈

N (xn). sn = [sn1, sn2, · · · , snn]T is a vector and snj =
‖xn−xj‖2∑

t∈N(xn) ‖xn−xt‖2
.

Out-of-sample extension computes the binary embed-
ding of a query q as yq = sign(YTwq). Here wq is
a locally linear reconstruction weight, and computed
similarly to the above optimization problem. Differently,
Y and wq correspond to the cluster centers, computed
using k-means, of the database X.

5.7 Beyond Hamming Distances in the Coding

Space

This section reviews the algorithms focusing on design-
ing effective distance measures given the binary codes
and possibly the hash functions. The summary is given
in Table 5.

5.7.1 Manhattan distance

When assigning multiple bits into a projection direc-
tion, the Hamming distance breaks the neighborhood
structure, thus the points with smaller Hamming dis-
tance along the projection direction might have large
Euclidean distance along the projection direction. Man-
hattan hashing [61] introduces a scheme to address this
issue, the Hamming codes along the projection direction
are in turn (e.g., from the left to the right) transformed
integers, and the difference of the integers is used to
replace the Hamming distance. The aggregation of the
differences along all the projection directions is used as
the distance of the hash codes.

5.7.2 Asymmetric distance

Let the compound hash function consist of K hash func-
tions {hk(x) = bk(gk(x))}, where gk() is a real-valued
embedding function and bk() is a binarization function.
Asymmetric distance [32]presents two schemes. The first
one (Asymmetric distance I) is based on the expectation
ḡkb = E(gk(x)|hk(x) = bk(gk(x)) = b), where b = 0 and
b = 1. When performing an online search, a distance
lookup table is precomputed:

{de(g1(q), ḡ10), de(g1(q), ḡ11), de(g2(q), ḡ20),
de(g2(q), ḡ21), · · · , de(gK(q), ḡK0), de(gK(q), ḡK1),

(109)

where de(·, ·) is an Euclidean distance operation.
Then the distance is computed as dah(q,x) =

21

TABLE 5

A summary of algorithms beyond Hamming distances in the coding space.

method input similarity distance measure

Manhattan hashing [61] E MD
Asymmetric distance I [61] E AED, SED
Asymmetric distance II [61] E LB
asymmetric Hamming embedding [44] E LB

∑K
k=1 de(gk(q), ḡkhk(x)), which can be speeded up e.g.,

by grouping the hash functions in blocks of 8 bits and
have one 256-dimensional look-up table per block (rather
than one 2-dimensional look-up table per hash function.)
This reduces the number of summations as well as the
number of lookup operations.

The second scheme (Asymmetric distance II) is under
the assumption that bk(gk(x)) = δ[gk(x) > tk], and
computes the distance lower bound (similar way also
adopted in asymmetric Hamming embedding [44]) over
the k-th hash function,

d(gk(q), bk(gk(x))) =

{

|gk(q)| if hk(x) 6= hk(q)
0 otherwise.

(110)
Similar to the first one, the distance is computed as

dah(q,x) =
∑K

k=1 d(gk(q), bk(gk(x))). Similar hash func-
tion grouping scheme is used to speed up the search
efficiency.

5.7.3 Query sensitive hash code ranking

Query sensitive hash code ranking [148] presented a
similar asymmetric scheme for R-neighbor search. This
method uses the PCA projection W to formulate the
hash functions sign(WTx) = sign(z). The similarity
along the k projection is computed as

sk(qk, yk, R) =
P (zkyk > 0, |qk − zk| 6 R)

P (|qk − zk| 6 R))
, (111)

which intuitively means that the fraction of the points
that lie in the range |qk − zk| 6 R and are mapped to
yk over the points that lie in the range |qk − zk| 6 R.
The similarity is computed with the assumption that
p(zk) is a Gaussian distribution. The whole similar-
ity is then computed as

∏K
k=1 sk(qk, yk, R), equivalently

∑K
k=1 log sk(qk, yk, R). The lookup table is also used to

speed up the distance computation.

5.7.4 Bit reconfiguration

The goal of bits reconfiguration [95] is to learn a good
distance measure over the hash codes precomputed from
a pool of hash functions. Given the hash codes {yn}Nn=1

with length M , the similar pairs M = {(i, j)} and the
dissimilar pairs C = {(i, j)}, compute the difference
matrix Dm (Dc) over M (C) each column of which corre-
sponds to yi−yj , (i, j) ∈ M ((i, j) ∈ C). The formulation

is given as the following maximization problem,

max
W

1

nc
trace(WTDcD

T
c W)− 1

nm
trace(WTDmDT

mW)

+
η

ns
trace(WTYsY

T
s W)− η trace(WTµµTW),

(112)

where W is a projection matrix of size b × t. The first
term aims to maximize the differences between dissim-
ilar pairs, and the second term aims to minimize the
differences between similar pairs. The last two terms are
maximized so that the bit distribution is balanced, which
is derived by maximizing E[‖WT (y − µ)‖22], where µ

represents the mean of the hash vectors, and Ys is a
subset of input hash vectors with cardinality ns. [95]
furthermore refines the hash vectors using the idea of
supervised locality-preserving method based on graph
Laplacian.

6 LEARNING TO HASH: QUANTIZATION

This section focuses on the algorithms that are based on
quantization. The representative algorithms are summa-
rized in Table 6.

6.1 1D Quantization

This section reviews the hashing algorithms that focuses
on how to do the quantization along a projection direc-
tion (partitioning the projection values of the reference
data items along the direction into multiple parts).

6.1.1 Transform coding

Similar to spectral hashing, transform coding [10] first
transforms the data using PCA and then assigns several
bits to each principal direction. Different from spectral
hashing that uses Laplacian eigenvalues computed along
each direction to select Laplacian eigenfunctions to form
hash functions, transform coding first adopts bit alloca-
tion to determine which principal direction is used and
how many bits are assigned to such a direction.

The bit allocation algorithm is given as follows in
Algorithm 1. To form the hash function, each selected
principal direction i is quantized into 2mi clusters with
the centers as {ci1, ci2, · · · , ci2mi }, where each center is
represented by a binary code of length mi. Encoding an
item consists of PCA projection followed by quantization
of the components. the hash function can be formulated.
The distance between a query item and the hash code is
evaluated as the aggregation of the distance between the

22

TABLE 6

A summary of quantization algorithms. sim. = similarity. dist. = distance.

method input sim. hash function dist. measure optimization criteria

transform coding [10] E OQ AED, SED BA
double-bit quantization [59] E OQ HD 3 partitions
iterative quantization [30], [31] E LI HD QE
isotropic hashing [60] E LI HD EV
harmonious hashing [138] E LI HD QE + EV
Angular quantization [29] CS LI NHA MCS
product quantization [49] E QU (A)ED QE
Cartesian k-means [102] E QU (A)ED QE
composite quantization [147] E QU (A)ED QE

Algorithm 1 Distribute M bits into the principal directions

1. Initialization: ei ← log
2
σi, mi ← 0.

2. for j = 1 to b do
3. i← argmax ei.
4. mi ← mi + 1.
5. ei ← ei − 1.
6. end for

centers of the query and the database item along each
selected principal direction, or the aggregation of the
distance between the center of the database item and the
projection of the query of the corresponding principal
direction along all the selected principal direction.

6.1.2 Double-bit quantization

The double-bit quantization-based hashing
algorithm [59] distributes two bits into each projection
direction instead of one bit in ITQ or hierarchical
hashing [83]. Unlike transform coding quantizing the
points into 2b clusters along each direction, double-bit
quantization conducts 3-cluster quantization, and then
assigns 01, 00, and 11 to each cluster so that the
Hamming distance between the points belonging to
neighboring clusters is 1, and the Hamming distance
between the points not belonging to neighboring
clusters is 2.

Local digit coding [62] represents each dimension of
a point by a single bit, which is set to 1 if the value
of the dimension it corresponds to is larger than a
threshold (derived from the mean of the corresponding
data points), and 0 otherwise.

6.2 Hypercubic Quantization

Hypercubic quantization refers to a category of algo-
rithms that quantize a data item to a vertex in a hyper-
cubic, i.e., a vector belonging to {[y1, y2, · · · , yM]|ym ∈
{−1, 1}}.

6.2.1 Iterative quantization

Iterative quantization [30], [31] aims to find the hash
codes such that the difference between the hash codes
and the data items, by viewing each bit as the quantiza-
tion value along the corresponding dimension, is mini-
mized. It consists of two steps: (1) reduce the dimension
using PCA to M dimensions, v = PTx, where P is a

matrix of size d×M (M 6 d) computed using PCA, and
(2) find the hash codes as well as an optimal rotation R,
by solving the following optimization problem,

min ‖Y −RTV‖2F , (113)

where V = [v1v2 · · ·vN] and Y = [y1y2 · · ·yN].
The problem is solved via alternative optimiza-

tion. There are two alternative steps. Fixing R, Y =
sign(RTV). Fixing B, the problem becomes the clas-
sic orthogonal Procrustes problem, and the solution is
R = ŜST , where S and Ŝ is obtained from the SVD of
YVT , YVT = SΛŜT .

We present an integrated objective function that is
able to explain the necessity of the first step. Let ȳ be
a d-dimensional vector, which is a concatenated vector
from y and an all-zero subvector: ȳ = [yT 0...0]T . The
integrated objective function is written as follows:

min ‖Ȳ − R̄TX‖2F , (114)

where Ȳ = [ȳ1ȳ2 · · · ȳN] X = [x1x2 · · ·xN], and R̄ is a
rotation matrix.

Let P̄ be the projection matrix of d×d, computed using
PCA, P̄ = [PP−]. It can be seen that, the solutions for
y of the two problems in 114 and 113 are the same, if
R̄ = P̄Diag(R, I).

6.2.2 Isotropic hashing

The idea of isotropic hashing [60] is to rotate the space
so that the variance along each dimension is the same.
It consists of three steps: (1) reduce the dimension using
PCA to M dimensions, v = PTx, where P is a matrix of
size d ×M (M 6 d) computed using PCA, and (2) find
an optimal rotation R, so that RTVVTR = Σ becomes
a matrix with equal diagonal values, i.e., [Σ]11 = [Σ]22 =
· · · = [Σ]MM .

Let σ = 1
M TraceVVT . The isotropic hashing algo-

rithm then aims to find an rotation matrix, by solving
the following problem:

‖RTVVTR− Z‖F = 0, (115)

where Z is a matrix with all the diagonal entries equal
to σ. The problem can be solved by two algorithms: lift
and projection and gradient flow.

The goal of making the variances along the M direc-
tions same is to make the bits in the hash codes equally

23

contributed to the distance evaluation. In the case that
the data items satisfy the isotropic Gaussian distribution,
the solution from isotropic hashing is equivalent to
iterative quantization.

Similar to generalized iterative quantization, the PCA
preprocess in isotropic hashing is also interpretable:
finding a global rotation matrix R̄ such that the first
M diagonal entries of Σ̄R̄TXXT R̄ are equal, and their
sum is as large as possible, which is formally written as
follows,

max

M
∑

m=1

[Σ]mm (116)

s. t. [Σ] = σ,m = 1, · · · ,M (117)

RTR = I. (118)

6.2.3 Harmonious hashing

Harmonious hashing [138] can be viewed as a combi-
nation of ITQ and Isotropic hashing. The formulation is
given as follows,

min
Y,R

‖Y −RTV‖2F (119)

s. t. YYT = σI (120)

RTR = I. (121)

It is different from ITQ in that the formulation does not
require Y to be a binary matrix. An iterative algorithm
is presented to optimize the above problem. Fixing R,
let RTV = UΛVT, then Y = σ1/2UVT . Fixing Y, R =
ŜST , where S and Ŝ is obtained from the SVD of YVT ,
YVT = SΛŜT . Finally, Y is cut at zero, attaining binary
codes.

6.2.4 Angular quantization

Angular quantization [29] addresses the ANN search
problem under the cosine similarity. The basic idea is
to use the nearest vertex from the vertices of the binary
hypercube {0, 1}d to approximate the data vector x,

argmaxy
yTx
‖b‖2

, subject to y ∈ {0, 1}d, which is shown

to be solved in O(d log d) time, and then to evaluate the

similarity
bT

xbq

‖bq‖2‖bx‖2
in the Hamming space.

The objective function of finding the binary codes,
similar to iterative quantization [30], is formulated as
below,

max
R,{yn}

N
∑

n=1

yT
n

‖yn‖2
RTxn

‖RTxn‖2
(122)

s. t. yn ∈ {0, 1}M , (123)

RTR = IM . (124)

Here R is a projection matrix of d ×M . This is trans-
formed to an easily-solved problem by discarding the

denominator ‖RTxn‖2:

max
R,{yn}

N
∑

n=1

yT
n

‖yn‖2
RTxn (125)

s. t. yn ∈ {0, 1}M , (126)

RTR = IM . (127)

The above problem is solved using alternative optimiza-
tion.

6.3 Cartesian Quantization

6.3.1 Product quantization

The basic idea of product quantization [49] is to divide
the feature space into (P) disjoint subspaces, thus the
database is divided into P sets, each set consisting
of N subvectors {xp1, · · · ,xpN}, and then to quan-
tize each subspace separately into (K) clusters. Let
{cp1, cp2, · · · , cpK} be the cluster centers of the p sub-
space, each of which can be encoded as a code of length
log2K .

A data item xn is divided into P subvectors {xpn},
and each subvector is assigned to the nearest center
cpkpn

among the cluster centers of the pth subspace.
Then the data item xn is represent by P subvec-
tors {cpkpn

}Pp=1, thus represented by a code of length
P log2K , k1nk2n · · · kPn. Product quantization can be
viewed as minimizing the following objective function,

min
C,{bn}

N
∑

n=1

‖xn −Cbn‖22. (128)

Here C is a matrix of d× PK in the form of

diag(C1,C2, · · · ,CP) =

C1 0 · · · 0

0 C2 · · · 0

...
...

. . .
...

0 0 · · · CP

, (129)

where Cp = [cp1cp2 · · · cpK]. bn is the composition vector,
and its subvector bnp of length K is an indicator vector
with only one entry being 1 and all others being 0, show-
ing which element is selected from the pth dictionary for
quantization.

Given a query vector xt, the distance to a vector xn,
represented by a code k1nk2n · · · kPn can be evaluated
in symmetric and asymmetric ways. The symmetric dis-
tance is computed as follows. First, the code of the query
xt is computed using the way similar to the database
vector, denoted by k1tk2t · · · kPt. Second, a distance table
is computed. The table consists of PK distance entries,
{dpk = ‖cpkpt

− cpk‖22|p = 1, · · · , P, k = 1, · · · ,K}.
Finally, the distance of the query to the vector xn is
computed by looking up the distance table and summing

up P distances,
∑P

p=1 dpkpn
. The asymmetric distance

does not encode the query vector, directly computes the
distance table that also includes PK distance entries,
{dpk = ‖xpt − cpk‖22|p = 1, · · · , P, k = 1, · · · ,K}, and

24

finally conducts the same step to the symmetric distance

evaluation, computing the distance as
∑P

p=1 dpkpn
.

Distance-encoded product quantization [39] extends
product quantization by encoding both the cluster index
and the distance between a point and its cluster center.
The way of encoding the cluster index is similar to that in
product quantization. The way of encoding the distance
between a point and its cluster center is given as follows.
Given a set of points belonging to a cluster, those points
are partitioned (quantized) according to the distances to
the cluster center.

6.3.2 Cartesian k-means

Cartesian k-means [102], [26] extends product quanti-
zation and introduces a rotation R into the objective
function,

min
R,C,{bn}

N
∑

n=1

‖RTxn −Cbn‖22. (130)

The introduced rotation does not affect the Euclidean
distance as the Euclidean distance is invariant to the ro-
tation, and helps to find an optimized subspace partition
for quantization.

The problem is solved by an alternative optimization
algorithm. Each iteration alternatively solves C, {bn},
and R. Fixing R, C and {bn} are solved using the same
way as the one in product quantization but with fewer
iterations and the necessity of reaching the converged
solution. Fixing C and {bn}, the problem of optimizing
R is the classic orthogonal Procrustes problem, also
occurring in iterative quantization.

The database vector xn with Cartesian k-means is
represented by P subvectors {cpkpn

}Pp=1, thus encoded as
k1nk2n · · · kPn, with a rotation matrix R for all database
vector (thus the rotation matrix does not increase the
code length). Given a query vector xt, it is first rotated
as RTxt. Then the distance is computed using the same
way to that in production quantization. As rotating the
query vector is only done once for a query, its compu-
tation cost for a large database is negligible compared
with the cost of computing the approximate distances
with a large amount of database vectors.

Locally optimized product quantization [58] applies
Cartesian k-means to the search algorithm with the in-
verted index, where there is a quantizer for each inverted
list.

6.3.3 Composite quantization

The basic ideas of composite quantization [147] consist
of (1) approximating the database vector xn using P vec-
tors with the same dimension d, c1k1n , c1k2n , · · · , c1kPn

,
each selected from K elements among one of P source
dictionaries {C1, C2, · · · , CP }, respectively, (2) making the
summation of the inner products of all pairs of elements
that are used to approximate the vector but from differ-

ent dictionaries,
∑P

i=1

∑P
j=1, 6=i cikin

cjkjn
, be constant.

The problem is formulated as

min
{Cp},{bn},ǫ

∑N

n=1
‖xn − [C1C2 · · ·CP]bn‖22 (131)

s. t.
∑P

i=1

∑P

j=1,j 6=i
bT
niC

T
i Cjbnj = ǫ

bn = [bT
n1b

T
n2 · · ·bT

nP]
T

bnp ∈ {0, 1}K, ‖bnp‖1 = 1

n = 1, 2, · · · , N, p = 1, 2, · · ·P.

Here, Cp is a matrix of size d × K , and each column
corresponds to an element of the pth dictionary Cp.

To get an easily optimization algorithm, the objective
function is transformed as

φ({Cp}, {bn}, ǫ) =
∑N

n=1
‖xn −Cbn‖22

+ µ
∑N

n=1
(
∑P

i6=j
bT
niC

T
i Cjbnj − ǫ)2, (132)

where µ is the penalty parameter, C = [C1C2 · · ·CP]

and
∑P

i6=j =
∑P

i=1

∑P
j=1,j 6=i. The transformed problem

is solved by alternative optimization.
The idea of using the summation of several dictionary

items as an approximation of a data item has already
been studied in the signal processing area, known as
multi-stage vector quantization, residual quantization,
or more generally structured vector quantization [34],
and recently re-developed for similarity search under the
Euclidean distance [5], [129] and inner product [22].

7 LEARNING TO HASH: OTHER TOPICS

7.1 Multi-Table Hashing

7.1.1 Complementary hashing

The purpose of complementary hashing [139] is to learn
multiple hash tables such that nearest neighbors have a
large probability to appear in the same bucket at least in
one hash table. The algorithm learns the hashing func-
tions for the multiple hash tables in a sequential way. The
compound hash function for the first table is learnt by
solving the same problem in [125], as formulated below

trace[WTXlSX
T
l W] + η trace[WTXXTW], (133)

where sij is initialized as K(aij −α), aij is the similarity
between xi and xj and α is a super-constant.

To compute the second compound hash functions, the
same objective function is optimized but with different
matrix S:

stij =

0 baij = b
(t−1)
ij

min(sij , fij) baij = 1, b
(t−1)
ij = −1

−min(−sij , fij) baij = −1, b
(t−1)
ij = 1

(134)

where fij = (aij − α)(14d
(t−1)
h (xi,xj) − β), β is a super-

constant, and b(t−1)ij = 1 − 2 sign[14d
(t−1)
h (xi,xj) − β].

Some tricks are also given to scale up the problem to
large scale databases.

25

7.1.2 Reciprocal hash tables

The reciprocal hash tables [86] extends complementary
hashing by building a graph over a pool B hash func-
tions (with the output being a binary value) and search-
ing the best hash functions over such a graph for build-
ing a hashing table, updating the graph weight using
a boosting-style algorithm and finding the subsequent
hash tables. The vertex in the graph corresponds to a
hash function and is associated with a weight showing
the degree that similar pairs are mapped to the same
binary value and dissimilar pairs are mapped to different
binary values. The weight over the edge connecting two
hash functions reflects the independence between two
hash functions the weight is higher if the difference of
the distributions of the binary values {−1, 1} computed
from the two hash functions is larger. [87] shows how to
formulate the hash bit selection problem into a quadric
program, which is derived from organizing the candi-
date bits in graph.

7.2 Active and Online Hashing

7.2.1 Active hashing

Active hashing [150] starts with a small set of pairs
of points with labeling information and actively selects
the most informative labeled pairs for hash function
learning. Given the sets of labeled data L, unlabeled
data U , and candidate data C, the algorithm first learns
the compound hash function h = sign(WTx), and then
computes the data certainty score for each point in
the candidate set, f(x) = ‖WTx‖2, which reflects the
distance of a point to the hyperplane forming the hash
functions. Points with smaller the data certainty scores
should be selected for further labeling. On the other
hand, the selected points should not be similar to each
other. To this end, the problem of finding the most
informative points is formulated as the following,

min
b

bT f̄ +
λ

M
bTKb (135)

s. t. b ∈ {0, 1}‖C‖ (136)

‖bT ‖1 =M, (137)

where b is an indicator vector in which bi = 1 when
xi is selected and bi = 0 when xi is not selected, M
is the number of points that need to be selected, f̄ is
a vector of the normalized certainty scores over the
candidate set, with each element f̄i =

fi

max
‖C‖
j=1 f̄j

, K is the

similarity matrix computed over C, and λ is the trade-off
parameter.

7.2.2 Online hashing

Online hashing [40] presents an algorithm to learn the
hash functions when the similar/dissimilar pairs come
sequentially rather than at the beginning, all the simi-
lar/dissimilar pairs come together. Smart hashing [142]
also addresses the problem when the similar/dissimilar

pairs come sequentially. Unlike the online hash algo-
rithm that updates all hash functions, smart hashing only
selects a small subset of hash functions for relearning for
a fast response to newly-coming labeled pairs.

7.3 Hashing for the Absolute Inner Product Similar-

ity

7.3.1 Concomitant hashing

Concomitant hashing [97] aims to find the
points with the smallest and largest absolute
cosine similarity. The approach is similar to
concomitant LSH [23] and formulate a two-bit
hash code using a multi-set {hmin(x), hmax(x)} =

{argmin2
K

k=1 w
T
k x, argmax2

K

k=1 w
T
k x}. The two bits are

unordered, which is slightly different from concomitant
LSH [23]. The collision probability is defined as
Prob[{hmin(x), hmax(x)} = {hmin(y), hmax(y)}], which
is shown to be a monotonically increasing function
with respect to |xT

1 x2|. This, thus, means that the
larger hamming distance, the smaller |xT

1 x2| (min-inner-
product) and the smaller hamming distance, the larger
|xT

1 x2| (max-inner-product).

7.4 Matrix Hashing

7.4.1 Bilinear projection

A bilinear projection algorithm is proposed in [28] to
hash a matrix feature to short codes. The (compound)
hash function is defined as

vec(sign(RT
l XRr)), (138)

where X is a matrix of dl × dr, Rl of size dl × dl and Rr

of size dr × dr are two random orthogonal matrices. It is
easy to show that

vec(RT
l XRr) = (RT

r ⊗RT
l) vec(X) = RT vec(X). (139)

The objective is to minimize the angle between
a rotated feature RT vec(X) and its binary encoding
sign(RT vec(X)) = vec(sign(RT

l XRr)). The formulation
is given as follows,

max
Rl,Rr,{Bn}

N
∑

n=1

trace(BnR
T
r X

T
nRl) (140)

s. t. Bn ∈ {−1,+1}dl×dr (141)

RT
l Rl = I (142)

RT
r Rr = I, (143)

where Bn = sign(RT
l XnRr). The problem is optimized

by alternating between {Bn}, Rl and Rr. To reduce the
code length, the low-dimensional orthogonal matrices
can be used: Rl ∈ R

dl×cl and Rr ∈ R
dr×cr .

26

7.5 Compact Sparse Coding

Compact sparse coding [14], the extension of the early
work robust sparse coding [15] adopts sparse codes to
represent the database items: the atom indices corre-
sponding to nonzero codes are used to build the inverted
index, and the nonzero coefficients are used to recon-
struct the database items and compute the approximate
distances between the query and the database items.

The sparse coding objective function, with introducing
the incoherence constraint of the dictionary, is given as
follows,

min
C,{zn}N

n=1

1

2

N
∑

i=1

‖xi −
K
∑

j=1

zijcj‖22 + λ‖zi‖1 (144)

s. t. ‖CT
∼kck‖∞ 6 γ; k = 1, 2, · · · , n, (145)

where C is the dictionary, CT
∼k is the dictionary C with

the kth atom removed, {zn}Nn=1 are the N sparse codes.
‖CT

∼kck‖∞ 6 γ aims to control the dictionary coherence
degree.

The support of xn is defined as the indices corre-
sponding to nonzero coefficients in zn: bn = δ.[zn 6= 0],
where δ.[] is an element-wise operation. The introduced
approach uses {bn}Nn=1 to build the inverted indices,
which is similar to min-hash, and also uses the Jaccard
similarity to get the search results. Finally, the asymmet-
ric distances between the query and the retrieved results
using the Jaccard similarity, ‖q−Bzn‖2 are computed for
reranking.

7.6 Fast Search in Hamming Space

7.6.1 Multi-index hashing

The idea [104] is that binary codes in the reference
database are indexed M times into M different hash
tables, based on M disjoint binary substrings. Given a
query binary code, entries that fall close to the query in at
least one substring are considered neighbor candidates.
Specifically, each code y is split into M disjoint subcodes
{y1, · · · ,yM}. For each subcode, ym, one hash table is
built, where each entry corresponds to a list of indices
of the binary code whose mth subcodes is equal to the
code associated with this entry.

To find R-neighbors of a query q with substrings
{qm}Mm=1, the algorithm searchmth hash table for entries
that are within a Hamming distance ⌊ R

M ⌋ of qm, thereby
retrieving a set of candidates, denoted by Nm(q) and
thus a set of final candidates, N = ∪M

m=1Nm(q). Lastly,
the algorithm computes the Hamming distance between
q and each candidate, retaining only those codes that
are true R-neighbors of q. [104] also discussed how to
choose the optimal number M of substrings.

7.6.2 FLANN

[100] extends the FLANN algorithm [99] that is initially
designed for ANN search over real-value vectors to
search over binary vectors. The key idea is to build
multiple hierarchical cluster trees to organize the binary

vectors and search for the nearest neighbors simultane-
ously over the multiple trees.

The tree building process starts with all the points
and divides them into K clusters with cluster centers
randomly selected from the input points and each point
assigned to the center that is closest to the point. The
algorithm is repeated recursively for each of the resulting
clusters until the number of points in each cluster is be-
low a certain threshold, in which case that node becomes
a leaf node. The whole process is repeated several times,
yielding multiple trees.

The search process starts with a single traverse of
each of the trees, during which the algorithm always
picks the node closest to the query point and recursively
explores it, while adding the unexplored nodes to a pri-
ority queue. When reaching the leaf node all the points
contained within are linearly searched. After each of the
trees has been explored once, the search is continued by
extracting from the priority queue the closest node to the
query point and resuming the tree traversal from there.
The search ends when the number of points examined
exceeds a maximum limit.

8 DISCUSSIONS AND FUTURE TRENDS

8.1 Scalable Hash Function Learning

The algorithms depending on the pairwise similarity,
such binary reconstructive embedding, usually sample
a small subset of pairs to reduce the cost of learning
hash functions. It is shown that the search accuracy is
increased with a high sampling rate, but the training
cost is greatly increased. The algorithms even without
relying pairwise similarity are also shown to be slow and
even infeasible when handling very large data, e.g., 1B
data items, and usually learn hash functions over a small
subset, e.g., 1M data items. This poses a challenging
request to learn the hash function over larger datasets.

8.2 Hash Code Computation Speedup

Existing hashing algorithms rarely do not take consid-
eration of the cost of encoding a data item. Such a cost
during the query stage becomes significant in the case
that only a small number of database items or a small
database are compared to the query. The search with
combining inverted index and compact codes is such a
case. an recent work, circulant binary embedding [143],
formulates the projection matrix (the weights in the
hash function) using a circular matrix R = circ(r).
The compound hash function is formulated is given as
h(x) = sign(RTx), where the computation is accelerated
using fast Fourier transformation with the time cost
reduced from O(d2) to d log d. It expects more research
study to speed up the hash code computation for other
hashing algorithms, such as composite quantization.

27

8.3 Distance Table Computation Speedup

Product quantization and its variants need to precom-
pute the distance table between the query and the ele-
ments of the dictionaries. Existing algorithms claim the
cost of distance table computation is negligible. However
in practice, the cost becomes bigger when using the
codes computed from quantization to rank the candi-
dates retrieved from inverted index. This is a research
direction that will attract research interests.

8.4 Multiple and Cross Modality Hashing

One important characteristic of big data is the variety
of data types and data sources. This is particularly true
to multimedia data, where various media types (e.g.,
video, image, audio and hypertext) can be described
by many different low- and high-level features, and
relevant multimedia objects may come from different
data sources contributed by different users and organiza-
tions. This raises a research direction, performing joint-
modality hashing learning by exploiting the relation
among multiple modalities, for supporting some special
applications, such as cross-model search. This topic is
attracting a lot of research efforts, such as collaborative
hashing [85], and cross-media hashing [120], [121], [152].

9 CONCLUSION

In this paper, we review two categories of hashing algo-
rithm developed for similarity search: locality sensitive
hashing and learning to hash and show how they are
designed to conduct similarity search. We also point out
the future trends of hashing for similarity search.

REFERENCES

[1] A. Andoni and P. Indyk. Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions. In FOCS,
pages 459–468, 2006. 4

[2] A. Andoni and P. Indyk. Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions. Commun.
ACM, 51(1):117–122, 2008. 5

[3] A. Andoni, P. Indyk, H. L. Nguyen, and I. Razenshteyn. Beyond
locality-sensitive hashing. In SODA, pages 1018–1028, 2014. 4

[4] V. Athitsos, M. Potamias, P. Papapetrou, and G. Kollios. Nearest
neighbor retrieval using distance-based hashing. In ICDE, pages
327–336, 2008. 8

[5] A. Babenko and V. Lempitsky. Additive quantization for extreme
vector compression. In CVPR, pages 931–939, 2014. 24

[6] S. Baluja and M. Covell. Learning ”forgiving” hash functions:
Algorithms and large scale tests. In IJCAI, pages 2663–2669, 2007.
17

[7] S. Baluja and M. Covell. Learning to hash: forgiving hash
functions and applications. Data Min. Knowl. Discov., 17(3):402–
430, 2008. 17

[8] S. Baluja and M. Covell. Beyond ”near duplicates”: Learning
hash codes for efficient similar-image retrieval. In ICPR, pages
543–547, 2010. 17

[9] M. Bawa, T. Condie, and P. Ganesan. Lsh forest: self-tuning
indexes for similarity search. In WWW, pages 651–660, 2005. 8

[10] J. Brandt. Transform coding for fast approximate nearest neigh-
bor search in high dimensions. In CVPR, pages 1815–1822, 2010.
21, 22

[11] A. Z. Broder. On the resemblance and containment of doc-
uments. In Proceedings of the Compression and Complexity of
Sequences 1997, SEQUENCES ’97, pages 21–29, Washington, DC,
USA, 1997. IEEE Computer Society. 3, 6

[12] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig. Syn-
tactic clustering of the web. Computer Networks, 29(8-13):1157–
1166, 1997. 3, 6

[13] M. Charikar. Similarity estimation techniques from rounding
algorithms. In STOC, pages 380–388, 2002. 3, 5

[14] A. Cherian. Nearest neighbors using compact sparse codes. In
ICML (2), pages 1053–1061, 2014. 26

[15] A. Cherian, V. Morellas, and N. Papanikolopoulos. Robust sparse
hashing. In ICIP, pages 2417–2420, 2012. 26

[16] F. Chierichetti and R. Kumar. Lsh-preserving functions and their
applications. In SODA, pages 1078–1094, 2012. 3

[17] O. Chum, J. Philbin, M. Isard, and A. Zisserman. Scalable near
identical image and shot detection. In CIVR, pages 549–556, 2007.
3

[18] O. Chum, J. Philbin, and A. Zisserman. Near duplicate image
detection: min-hash and tf-idf weighting. In BMVC, pages 1–10,
2008. 3

[19] A. Dasgupta, R. Kumar, and T. Sarlós. Fast locality-sensitive
hashing. In KDD, pages 1073–1081, 2011. 3, 9

[20] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In
Symposium on Computational Geometry, pages 253–262, 2004. 3,
4

[21] W. Dong, Z. Wang, W. Josephson, M. Charikar, and K. Li.
Modeling lsh for performance tuning. In CIKM, pages 669–678,
2008. 9

[22] C. Du and J. Wang. Inner product similarity search using
compositional codes. CoRR, abs/1406.4966, 2014. 24

[23] K. Eshghi and S. Rajaram. Locality sensitive hash functions
based on concomitant rank order statistics. In KDD, pages 221–
229, 2008. 5, 25

[24] L. Fan. Supervised binary hash code learning with jensen
shannon divergence. In ICCV, pages 2616–2623, 2013. 15

[25] J. Gan, J. Feng, Q. Fang, and W. Ng. Locality-sensitive hashing
scheme based on dynamic collision counting. In SIGMOD
Conference, pages 541–552, 2012. 3, 9

[26] T. Ge, K. He, Q. Ke, and J. Sun. Optimized product quantization
for approximate nearest neighbor search. In CVPR, pages 2946–
2953, 2013. 24

[27] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high
dimensions via hashing. In VLDB, pages 518–529, 1999. 3

[28] Y. Gong, S. Kumar, H. A. Rowley, and S. Lazebnik. Learning bi-
nary codes for high-dimensional data using bilinear projections.
In CVPR, pages 484–491, 2013. 25

[29] Y. Gong, S. Kumar, V. Verma, and S. Lazebnik. Angular
quantization-based binary codes for fast similarity search. In
NIPS, pages 1205–1213, 2012. 3, 22, 23

[30] Y. Gong and S. Lazebnik. Iterative quantization: A procrustean
approach to learning binary codes. In CVPR, pages 817–824,
2011. 3, 12, 22, 23

[31] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative
quantization: A procrustean approach to learning binary codes
for large-scale image retrieval. IEEE Trans. Pattern Anal. Mach.
Intell., 35(12):2916–2929, 2013. 3, 12, 22

[32] A. Gordo, F. Perronnin, Y. Gong, and S. Lazebnik. Asymmetric
distances for binary embeddings. IEEE Trans. Pattern Anal. Mach.
Intell., 36(1):33–47, 2014. 20

[33] D. Gorisse, M. Cord, and F. Precioso. Locality-sensitive hash-
ing for chi2 distance. IEEE Trans. Pattern Anal. Mach. Intell.,
34(2):402–409, 2012. 7

[34] R. M. Gray and D. L. Neuhoff. Quantization. IEEE Transactions
on Information Theory, 44(6):2325–2383, 1998. 24

[35] J. He, S.-F. Chang, R. Radhakrishnan, and C. Bauer. Compact
hashing with joint optimization of search accuracy and time. In
CVPR, pages 753–760, 2011. 12, 13

[36] J. He, S. Kumar, and S.-F. Chang. On the difficulty of nearest
neighbor search. In ICML, 2012. 10

[37] J. He, W. Liu, and S.-F. Chang. Scalable similarity search with
optimized kernel hashing. In KDD, pages 1129–1138, 2010. 12,
13

[38] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon. Spherical
hashing. In CVPR, pages 2957–2964, 2012. 12, 18

[39] J.-P. Heo, Z. Lin, and S.-E. Yoon. Distance encoded product
quantization. In CVPR, pages 2139–2146, 2014. 24

[40] L.-K. Huang, Q. Yang, and W.-S. Zheng. Online hashing. In
IJCAI, 2013. 25

[41] Y. Hwang, B. Han, and H.-K. Ahn. A fast nearest neighbor search
algorithm by nonlinear embedding. In CVPR, pages 3053–3060,
2012. 19

[42] P. Indyk and R. Motwani. Approximate nearest neighbors:

28

Towards removing the curse of dimensionality. In STOC, pages
604–613, 1998. 3, 6

[43] G. Irie, Z. Li, X.-M. Wu, and S.-F. Chang. Locally linear hashing
for extracting non-linear manifolds. In CVPR, pages 2123–2130,
2014. 20

[44] M. Jain, H. Jégou, and P. Gros. Asymmetric hamming embed-
ding: taking the best of our bits for large scale image search. In
ACM Multimedia, pages 1441–1444, 2011. 21

[45] P. Jain, B. Kulis, I. S. Dhillon, and K. Grauman. Online metric
learning and fast similarity search. In NIPS, pages 761–768, 2008.
5

[46] P. Jain, B. Kulis, and K. Grauman. Fast image search for learned
metrics. In CVPR, 2008. 5

[47] P. Jain, S. Vijayanarasimhan, and K. Grauman. Hashing hy-
perplane queries to near points with applications to large-scale
active learning. In NIPS, pages 928–936, 2010. 6

[48] H. Jégou, L. Amsaleg, C. Schmid, and P. Gros. Query adaptative
locality sensitive hashing. In ICASSP, pages 825–828, 2008. 8

[49] H. Jégou, M. Douze, and C. Schmid. Product quantization for
nearest neighbor search. IEEE Trans. Pattern Anal. Mach. Intell.,
33(1):117–128, 2011. 22, 23

[50] H. Jégou, T. Furon, and J.-J. Fuchs. Anti-sparse coding for
approximate nearest neighbor search. In ICASSP, pages 2029–
2032, 2012. 19

[51] J. Ji, J. Li, S. Yan, Q. Tian, and B. Zhang. Min-max hash for
jaccard similarity. In ICDM, pages 301–309, 2013. 3, 6

[52] J. Ji, J. Li, S. Yan, B. Zhang, and Q. Tian. Super-bit locality-
sensitive hashing. In NIPS, pages 108–116, 2012. 3, 5

[53] Y.-G. Jiang, J. Wang, and S.-F. Chang. Lost in binarization: query-
adaptive ranking for similar image search with compact codes.
In ICMR, page 16, 2011. 12, 19

[54] Y.-G. Jiang, J. Wang, X. Xue, and S.-F. Chang. Query-adaptive
image search with hash codes. IEEE Transactions on Multimedia,
15(2):442–453, 2013. 12, 19

[55] Z. Jin, Y. Hu, Y. Lin, D. Zhang, S. Lin, D. Cai, and X. Li.
Complementary projection hashing. In ICCV, pages 257–264,
2013. 12, 17

[56] A. Joly and O. Buisson. A posteriori multi-probe locality sensi-
tive hashing. In ACM Multimedia, pages 209–218, 2008. 8

[57] A. Joly and O. Buisson. Random maximum margin hashing. In
CVPR, pages 873–880, 2011. 12, 18

[58] Y. Kalantidis and Y. Avrithis. Locally optimized product quanti-
zation for approximate nearest neighbor search. In CVPR, pages
2329–2336, 2014. 24

[59] W. Kong and W.-J. Li. Double-bit quantization for hashing. In
AAAI, 2012. 22

[60] W. Kong and W.-J. Li. Isotropic hashing. In NIPS, pages 1655–
1663, 2012. 12, 22

[61] W. Kong, W.-J. Li, and M. Guo. Manhattan hashing for large-
scale image retrieval. In SIGIR, pages 45–54, 2012. 20, 21

[62] N. Koudas, B. C. Ooi, H. T. Shen, and A. K. H. Tung. Ldc:
Enabling search by partial distance in a hyper-dimensional
space. In ICDE, pages 6–17, 2004. 22

[63] B. Kulis and T. Darrell. Learning to hash with binary reconstruc-
tive embeddings. In NIPS, pages 1042–1050, 2009. 12, 15

[64] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing
for scalable image search. In ICCV, pages 2130–2137, 2009. 5

[65] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing.
IEEE Trans. Pattern Anal. Mach. Intell., 34(6):1092–1104, 2012. 5

[66] B. Kulis, P. Jain, and K. Grauman. Fast similarity search
for learned metrics. IEEE Trans. Pattern Anal. Mach. Intell.,
31(12):2143–2157, 2009. 5

[67] P. Li and K. W. Church. A sketch algorithm for estimating
two-way and multi-way associations. Computational Linguistics,
33(3):305–354, 2007. 6

[68] P. Li, K. W. Church, and T. Hastie. Conditional random sampling:
A sketch-based sampling technique for sparse data. In NIPS,
pages 873–880, 2006. 3, 6

[69] P. Li, T. Hastie, and K. W. Church. Very sparse random projec-
tions. In KDD, pages 287–296, 2006. 3

[70] P. Li and A. C. König. b-bit minwise hashing. In WWW, pages
671–680, 2010. 3, 7

[71] P. Li, A. C. König, and W. Gui. b-bit minwise hashing for
estimating three-way similarities. In NIPS, pages 1387–1395,
2010. 3, 7

[72] P. Li, M. Mitzenmacher, and A. Shrivastava. Coding for random
projections. In ICML (2), pages 676–684, 2014. 4

[73] P. Li, A. B. Owen, and C.-H. Zhang. One permutation hashing.
In NIPS, pages 3122–3130, 2012. 3, 6

[74] P. Li, M. Wang, J. Cheng, C. Xu, and H. Lu. Spectral hashing

with semantically consistent graph for image indexing. IEEE
Transactions on Multimedia, 15(1):141–152, 2013. 12

[75] X. Li, G. Lin, C. Shen, A. van den Hengel, and A. R. Dick.
Learning hash functions using column generation. In ICML (1),
pages 142–150, 2013. 12, 17

[76] G. Lin, C. Shen, Q. Shi, A. van den Hengel, and D. Suter. Fast
supervised hashing with decision trees for high-dimensional
data. In CVPR, pages 1971–1978, 2014. 20

[77] G. Lin, C. Shen, D. Suter, and A. van den Hengel. A general
two-step approach to learning-based hashing. In ICCV, pages
2552–2559, 2013. 20

[78] R.-S. Lin, D. A. Ross, and J. Yagnik. Spec hashing: Similarity
preserving algorithm for entropy-based coding. In CVPR, pages
848–854, 2010. 12, 15

[79] Y. Lin, D. Cai, and C. Li. Density sensitive hashing. CoRR,
abs/1205.2930, 2012. 12, 18

[80] Y. Lin, R. Jin, D. Cai, S. Yan, and X. Li. Compressed hashing. In
CVPR, pages 446–451, 2013. 15

[81] D. Liu, S. Yan, R.-R. Ji, X.-S. Hua, and H.-J. Zhang. Image
retrieval with query-adaptive hashing. TOMCCAP, 9(1):2, 2013.
12, 19

[82] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang. Supervised
hashing with kernels. In CVPR, pages 2074–2081, 2012. 3, 12, 15

[83] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with
graphs. In ICML, pages 1–8, 2011. 3, 12, 14, 15, 22

[84] W. Liu, J. Wang, Y. Mu, S. Kumar, and S.-F. Chang. Compact
hyperplane hashing with bilinear functions. In ICML, 2012. 12,
15, 16

[85] X. Liu, J. He, C. Deng, and B. Lang. Collaborative hashing. In
CVPR, pages 2147–2154, 2014. 27

[86] X. Liu, J. He, and B. Lang. Reciprocal hash tables for nearest
neighbor search. In AAAI, 2013. 25

[87] X. Liu, J. He, B. Lang, and S.-F. Chang. Hash bit selection: A
unified solution for selection problems in hashing. In CVPR,
pages 1570–1577, 2013. 25

[88] Y. Liu, J. Cui, Z. Huang, H. Li, and H. T. Shen. Sk-lsh: An
efficient index structure for approximate nearest neighbor search.
PVLDB, 7(9):745–756, 2014. 9

[89] Y. Liu, J. Shao, J. Xiao, F. Wu, and Y. Zhuang. Hypergraph
spectral hashing for image retrieval with heterogeneous social
contexts. Neurocomputing, 119:49–58, 2013. 12, 13

[90] Y. Liu, F. Wu, Y. Yang, Y. Zhuang, and A. G. Hauptmann. Spline
regression hashing for fast image search. IEEE Transactions on
Image Processing, 21(10):4480–4491, 2012. 19

[91] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li. Multi-
probe lsh: Efficient indexing for high-dimensional similarity
search. In VLDB, pages 950–961, 2007. 3, 8

[92] G. S. Manku, A. Jain, and A. D. Sarma. Detecting near-duplicates
for web crawling. In WWW, pages 141–150, 2007. 3

[93] Y. Matsushita and T. Wada. Principal component hashing: An
accelerated approximate nearest neighbor search. In PSIVT,
pages 374–385, 2009. 12

[94] R. Motwani, A. Naor, and R. Panigrahy. Lower bounds on
locality sensitive hashing. SIAM J. Discrete Math., 21(4):930–935,
2007. 3, 4

[95] Y. Mu, X. Chen, X. Liu, T.-S. Chua, and S. Yan. Multimedia
semantics-aware query-adaptive hashing with bits reconfigura-
bility. IJMIR, 1(1):59–70, 2012. 21

[96] Y. Mu, J. Shen, and S. Yan. Weakly-supervised hashing in kernel
space. In CVPR, pages 3344–3351, 2010. 12, 17

[97] Y. Mu, J. Wright, and S.-F. Chang. Accelerated large scale
optimization by concomitant hashing. In ECCV (1), pages 414–
427, 2012. 25

[98] Y. Mu and S. Yan. Non-metric locality-sensitive hashing. In
AAAI, 2010. 7

[99] M. Muja and D. G. Lowe. Fast approximate nearest neighbors
with automatic algorithm configuration. In VISSAPP (1), pages
331–340, 2009. 26

[100] M. Muja and D. G. Lowe. Fast matching of binary features. In
CRV, pages 404–410, 2012. 26

[101] M. Norouzi and D. J. Fleet. Minimal loss hashing for compact
binary codes. In ICML, pages 353–360, 2011. 12, 16

[102] M. Norouzi and D. J. Fleet. Cartesian k-means. In CVPR, pages
3017–3024, 2013. 22, 24

[103] M. Norouzi, D. J. Fleet, and R. Salakhutdinov. Hamming distance
metric learning. In NIPS, pages 1070–1078, 2012. 12, 16

[104] M. Norouzi, A. Punjani, and D. J. Fleet. Fast search in hamming
space with multi-index hashing. In CVPR, pages 3108–3115,
2012. 26

[105] R. O’Donnell, Y. Wu, and Y. Zhou. Optimal lower bounds for

29

locality sensitive hashing (except when q is tiny). In ICS, pages
275–283, 2011. 3, 4

[106] J. Pan and D. Manocha. Bi-level locality sensitive hashing for
k-nearest neighbor computation. In ICDE, pages 378–389, 2012.
9

[107] R. Panigrahy. Entropy based nearest neighbor search in high
dimensions. In SODA, pages 1186–1195, 2006. 3, 8

[108] L. Paulevé, H. Jégou, and L. Amsaleg. Locality sensitive hashing:
A comparison of hash function types and querying mechanisms.
Pattern Recognition Letters, 31(11):1348–1358, 2010. 4

[109] M. Raginsky and S. Lazebnik. Locality-sensitive binary codes
from shift-invariant kernels. In NIPS, pages 1509–1517, 2009. 7

[110] A. Rahimi and B. Recht. Random features for large-scale kernel
machines. In NIPS, 2007. 7

[111] R. Salakhutdinov and G. E. Hinton. Semantic hashing. In SIGIR
workshop on Information Retrieval and applications of Graphical
Models, 2007. 19

[112] R. Salakhutdinov and G. E. Hinton. Semantic hashing. Int. J.
Approx. Reasoning, 50(7):969–978, 2009. 19

[113] V. Satuluri and S. Parthasarathy. Bayesian locality sensitive
hashing for fast similarity search. PVLDB, 5(5):430–441, 2012.
9

[114] G. Shakhnarovich. Learning Task-Specific Similarity. PhD thesis,
Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 2005. 12, 17

[115] G. Shakhnarovich, P. A. Viola, and T. Darrell. Fast pose estima-
tion with parameter-sensitive hashing. In ICCV, pages 750–759,
2003. 12, 17

[116] J. Shao, F. Wu, C. Ouyang, and X. Zhang. Sparse spectral
hashing. Pattern Recognition Letters, 33(3):271–277, 2012. 13

[117] F. Shen, C. Shen, Q. Shi, A. van den Hengel, and Z. Tang.
Inductive hashing on manifolds. In CVPR, pages 1562–1569,
2013. 19

[118] A. Shrivastava and P. Li. Densifying one permutation hashing
via rotation for fast near neighbor. In ICML (1), page 557565,
2014. 3, 6

[119] M. Slaney, Y. Lifshits, and J. He. Optimal parameters for locality-
sensitive hashing. Proceedings of the IEEE, 100(9):2604–2623, 2012.
10

[120] J. Song, Y. Yang, Z. Huang, H. T. Shen, and J. Luo. Effective
multiple feature hashing for large-scale near-duplicate video
retrieval. IEEE Transactions on Multimedia, 15(8):1997–2008, 2013.
27

[121] J. Song, Y. Yang, Y. Yang, Z. Huang, and H. T. Shen. Inter-
media hashing for large-scale retrieval from heterogeneous data
sources. In SIGMOD Conference, pages 785–796, 2013. 27

[122] C. Strecha, A. M. Bronstein, M. M. Bronstein, and P. Fua.
Ldahash: Improved matching with smaller descriptors. IEEE
Trans. Pattern Anal. Mach. Intell., 34(1):66–78, 2012. 12, 14

[123] K. Terasawa and Y. Tanaka. Spherical lsh for approximate nearest
neighbor search on unit hypersphere. In WADS, pages 27–38,
2007. 4

[124] S. Vijayanarasimhan, P. Jain, and K. Grauman. Hashing hy-
perplane queries to near points with applications to large-scale
active learning. IEEE Trans. Pattern Anal. Mach. Intell., 36(2):276–
288, 2014. 6

[125] J. Wang, O. Kumar, and S.-F. Chang. Semi-supervised hashing
for scalable image retrieval. In CVPR, pages 3424–3431, 2010. 3,
12, 13, 14, 24

[126] J. Wang, S. Kumar, and S.-F. Chang. Sequential projection
learning for hashing with compact codes. In ICML, pages 1127–
1134, 2010. 3, 12, 13, 14

[127] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised hashing
for large-scale search. IEEE Trans. Pattern Anal. Mach. Intell.,
34(12):2393–2406, 2012. 3, 12, 13, 14

[128] J. Wang, W. Liu, A. X. Sun, and Y.-G. Jiang. Learning hash codes
with listwise supervision. In ICCV, pages 3032–3039, 2013. 12,
16

[129] J. Wang, J. Wang, J. Song, X.-S. Xu, H. T. Shen, and S. Li.
Optimized cartesian k-means. CoRR, abs/1405.4054, 2014. 24

[130] J. Wang, J. Wang, N. Yu, and S. Li. Order preserving hashing for
approximate nearest neighbor search. In ACM Multimedia, pages
133–142, 2013. 3, 12, 16

[131] Q. Wang, D. Zhang, and L. Si. Weighted hashing for fast large
scale similarity search. In CIKM, pages 1185–1188, 2013. 12, 18

[132] S. Wang, Q. Huang, S. Jiang, and Q. Tian. S3mkl: Scalable
semi-supervised multiple kernel learning for real-world image
applications. IEEE Transactions on Multimedia, 14(4):1259–1274,
2012. 5

[133] S. Wang, S. Jiang, Q. Huang, and Q. Tian. S3mkl: scalable semi-
supervised multiple kernel learning for image data mining. In
ACM Multimedia, pages 163–172, 2010. 5

[134] Y. Weiss, R. Fergus, and A. Torralba. Multidimensional spectral
hashing. In ECCV (5), pages 340–353, 2012. 12, 13, 18

[135] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In NIPS,
pages 1753–1760, 2008. 3, 11, 12, 13, 15, 18, 19

[136] C. Wu, J. Zhu, D. Cai, C. Chen, and J. Bu. Semi-supervised
nonlinear hashing using bootstrap sequential projection learning.
IEEE Trans. Knowl. Data Eng., 25(6):1380–1393, 2013. 14

[137] H. Xia, P. Wu, S. C. H. Hoi, and R. Jin. Boosting multi-kernel
locality-sensitive hashing for scalable image retrieval. In SIGIR,
pages 55–64, 2012. 5

[138] B. Xu, J. Bu, Y. Lin, C. Chen, X. He, and D. Cai. Harmonious
hashing. In IJCAI, 2013. 22, 23

[139] H. Xu, J. Wang, Z. Li, G. Zeng, S. Li, and N. Yu. Complementary
hashing for approximate nearest neighbor search. In ICCV, pages
1631–1638, 2011. 3, 17, 24

[140] J. Yagnik, D. Strelow, D. A. Ross, and R.-S. Lin. The power of
comparative reasoning. In ICCV, pages 2431–2438, 2011. 7

[141] H. Yang, X. Bai, J. Zhou, P. Ren, Z. Zhang, and J. Cheng.
Adaptive object retrieval with kernel reconstructive hashing. In
CVPR, pages 1955–1962, 2014. 15

[142] Q. Yang, L.-K. Huang, W.-S. Zheng, and Y. Ling. Smart hashing
update for fast response. In IJCAI, 2013. 25

[143] F. Yu, S. Kumar, Y. Gong, and S.-F. Chang. Circulant binary
embedding. In ICML (2), pages 946–954, 2014. 26

[144] D. Zhang, J. Wang, D. Cai, and J. Lu. Self-taught hashing for
fast similarity search. In SIGIR, pages 18–25, 2010. 20

[145] L. Zhang, Y. Zhang, J. Tang, X. Gu, J. Li, and Q. Tian. Topology
preserving hashing for similarity search. In ACM Multimedia,
pages 123–132, 2013. 12, 14

[146] L. Zhang, Y. Zhang, D. Zhang, and Q. Tian. Distribution-aware
locality sensitive hashing. In MMM (2), pages 395–406, 2013. 5

[147] T. Zhang, C. Du, and J. Wang. Composite quantization for
approximate nearest neighbor search. In ICML (2), pages 838–
846, 2014. 22, 24

[148] X. Zhang, L. Zhang, and H.-Y. Shum. Qsrank: Query-sensitive
hash code ranking for efficient neighbor search. In CVPR, pages
2058–2065, 2012. 21

[149] W.-L. Zhao, H. Jégou, and G. Gravier. Sim-min-hash: an efficient
matching technique for linking large image collections. In ACM
Multimedia, pages 577–580, 2013. 7

[150] Y. Zhen and D.-Y. Yeung. Active hashing and its application to
image and text retrieval. Data Min. Knowl. Discov., 26(2):255–274,
2013. 25

[151] X. Zhu, Z. Huang, H. Cheng, J. Cui, and H. T. Shen. Sparse
hashing for fast multimedia search. ACM Trans. Inf. Syst., 31(2):9,
2013. 20

[152] X. Zhu, Z. Huang, H. T. Shen, and X. Zhao. Linear cross-modal
hashing for efficient multimedia search. In ACM Multimedia,
pages 143–152, 2013. 27

[153] Y. Zhuang, Y. Liu, F. Wu, Y. Zhang, and J. Shao. Hypergraph
spectral hashing for similarity search of social image. In ACM
Multimedia, pages 1457–1460, 2011. 12, 13

